在分析方法中,干扰问题电磁干扰产生的原因因有哪些

|||||||||||
您现在的位置:&&
分析PLC现场干扰问题
分析PLC现场干扰问题&基本原理  现场引起干扰的原因很多,要解决干扰问题,须先找出引起干扰的原因,再针对问题进行解决。有些干扰可以事后想补求办法,有些干扰事后解决就会非常麻烦。象布线一般在施工时就有要求,否则在现场重新布线存在很大的困难,有时候根本就不允许。  引起干扰的原因基本上是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。在现场有四种情况可以引起这样的变化:  1、强电干扰:  仪表信号、PLC控制信号都为弱电,易受强电干扰。所以要求在柜外布线时(在电缆沟、电缆桥架、穿管等敷设方式),将通讯线、信号线、控制线等弱电信号远离强电,间距不得少于20CM。电缆沟多层时,要求弱电电缆敷设在强电电缆下方。  2、柜内干扰:  PLC不能和高压电器安装在同一个开关柜内,PLC的输出采用中间继电器实现对外部开关量信号的隔离。如果现场条件限制,输入信号不能和强电电缆有效的隔离,可用小型继电器来隔离输入端的开关量信号。当然PLC来自控制柜内的输入信号和距控制柜不远的输入信号一般没有必要用继电器隔离。  控制柜内的有很多信号线。如走线混乱,会引起设备误动作,检查起来却相当麻烦。所以在控制柜设计时应考虑到这种情况,设备分层罢放,走线清晰。成套时,将PLC的IO线和大功率线分开走线,如必须在同一线槽内,分开捆扎交流线、直流线,如条件允许,分槽走线最好,并使其有尽可能大的空间距离,力求将干扰降到最低限度。  不同的信号线最好不用同一个插接件转接,如必须用同一个插接件,要用备用端子或地线端子将它们分隔开,以减少相互干扰。  PLC不能和高压电器安装在同一个开关柜内,在柜内PLC应远离动力线(二者之间距离应大于200mm)。与PLC装在同一个柜子内的电感性负载,如继电器、接触器的线圈,应并联RC消弧电路。  3、信号线的抗干扰  信号线承担着检测信号和控制信号的传输任务,传输质量直接影响到整个控制系统的准确性、稳定性和可靠性。对信号线的干扰主要是来自空间的电磁辐射,有差模干扰和共模干扰两种。  差模干扰是指叠加在测量信号线上的干扰信号,这种干扰大多是频率较高的交变信号,其来源一般是耦合干扰。抑制常态干扰的方法有:  在输入回路接RC滤波器或双T滤波器;尽量采用双积分式A/D转换器,由于这种积分器工作的特点,具有一定的消除高频干扰的作用;  将电压信号转换成电流信号再传输。  共模干扰是指信号线上共有的干扰信号,一般是由被测信号的接地端与控制系统的接地端存在一定的电位差引起的,这种干扰在两条信号线上的周期、幅值基本相等情况下,采用上面的方法无法消除或抑制。方法如下:  采用双差分输入的差动放大器,这种放大器具有很高的共模抑制比;  输入线采用绞合线,绞合线能降低共模干扰,其感应互相抵消;  采用光电隔离的方法,可以消除共模干扰;  使用屏蔽线,并单边接地;  为避免信号失真,对于较长距离传输的信号要注意阻抗匹配。  4、变频器干扰  一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。  变频器的干扰处理比较麻烦,一般有下面几种:  A、 加隔离变压器。主要是针对来自电源的传导干扰。可以将绝大部分的传导干扰阻隔在隔离变压器之前。同时还兼有电源电压变换的作用。  B、使用滤波器  滤波器分有源和无源两种,一般采用无源滤波即会有效果。这些滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。  C、输出电抗器  在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。电抗器必须装在距离变频器最近的地方。如果使用铠装电缆作为变频器与电动机的连线时,可不使用这种方法。但电缆的铠要在变频器端可靠接地,接地的铠要原样不动,不能钮成绳或辨,不能用其它导线延长,变频器侧要接在变频器的地线端子上,再将变频器接地。  4.通讯干扰:最好用隔离通讯方式或用巨腾的串口转光纤环模块。  贰、线(先天良后天足)  1、线材必须对  开关量信号(如按钮、限位开关、接近开关等提供的信号)一般对电缆无特殊要求,可选用一般的电缆,信号传输距离远时,可选用屏蔽电缆。  模拟信号和高速信号线(如脉冲传感器、计数码盘等提供的信号)应选择屏蔽电缆。  通讯电缆要求可靠性高,有的通信电缆的信号频率很高,一般应选择PLC生产厂家提供的专用电缆,在要求不高或信号频率较低时,也可以选用带屏蔽的双绞线电缆,但品质要好。  2、管路布线须正确  将通讯线、信号线、控制线等弱电信号远离强电,间距不得少于20CM。电源电压220V以上、电流10A以上的电源电缆与信号电缆之间的距离应该大于60CM。  隔离强电或远离高频干扰源(如大功率可控硅装置、变频器、高频焊机和大型动力线)。  在现场按如上处理后如仍无法解决干扰,在管线上套用用金属管或金属网。  叁、地  1、安全地或电源接地;  将电源线接地端和柜体连线接地为安全接地。如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。  2、系统接地或主地  如图所示,PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不得大于4&O。  如图所示,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,为控制系统地。ANCO公司的OPEN_PLC系统地为电源模块上GND端。  上图为控制柜和信号线的接地示意图。一般要求信号线必须要有唯一的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成&地环路&。  3、信号与屏蔽接地  1) 信号线接地  开关量信号不需要接地。模块量信号要做接地处理。如下所图,对各种线制的接地都有说明。  a, 2线制传送器信号,采用电源接地  b, 3线式传送器最好加隔离或采用隔离输入模块  c, 4线式传送器最好在传送端接地。若非要在接收端接地,切记传送端要悬空。  2)屏蔽地接地只能单点接地(若高频则两端接地,一般模拟信号传输以防干扰为主,不宜两端接地)  3)通讯接地  如果485通讯为非隔离,每一个节点的电源(5V,GND)的GND必须接地。485通讯采用隔离,如下图所示;单点接地通讯全更稳定。 通讯线使用屏蔽双绞线,所以对屏蔽线要进行接地-单点接地通讯线使用屏蔽双绞线,所以对屏蔽线要进行接地-单点接地现场情况错踪复杂,会对信号线产生各种干扰,如何用简单的测试设备来判断是否存在干扰?步骤如下:  1) 用万用表AC档检测接收端 ?  ?,如受干扰会产生交流信号。如果这个信号不大,则对信号采集影响很小,几乎没有。如果这个交流信号大,则会影响数值,需想办法解决。  2) 看?端是否接地?如接地是否存在悬空或接地不良情况。用万用表测?端和地(可以是系统地,也可以是信号地)之间的电压差。  3) 若存在交流电压,则表示存在干扰;  4) 若没有交流电压,有直流电压差。这个电压差大,影响系统;差值小,则影响小,可忽略不计。  5) 再看屏蔽层是否接地,是单点接地还是双点接地?一般为单点接地。  4.2、接地线是否存在干扰?  1) 将信号线折下,用万用表相应档测信号线,信号正常,则OK!  2) 确定负端是否接地,若是则OK!没有接地最好在(传感器端接地)。  3) 如情况还没有解决,在接收端信号线上加隔离器。  对前面三地做一个总结,在一个工程中,接地处理注意下面几个方面:  1、 机体接交流电源的Gnd并接地。  2、 柜内用到的直流电源,将直流电源的地端接到系统地。  3、传送模拟信号的屏蔽线进行单点接地。若为了泄放高频干扰,数字信号线的屏蔽层应并联电位均衡线,其电阻应小于屏蔽层电阻的1/10,并将屏蔽层两端接地。若干扰还是无法解决,加隔离器。  4、 通讯线全接地,否则改成全隔离或者转成光纤通讯,不受任何干扰。  5、 屏蔽接地电极与变压器零线等其它强电设备接地电极的距离大于15m。  6、 信号线必须要有唯一的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成&地环路&。 4P(四项专业)  4P含设计、现场施工、试车、现场测试四个部分。每一部分的工作都需要懂技术、有经验的工程人员来完成;  1、设计  品质是设计出来的,在工程最初设计阶段,工程师就考虑到所有可能发生的干扰现象。一般有下面几个方面:  A、 接地系统的设计(参考三地处理原则)  B、 管线的设计,应选合适的信号线、通讯线,作保守的管路设计,尤其是通讯管路最好采用全程金属管。  C、 电源设计,尤其是有变频器应用的场合,需特别注意电源的隔离。  D、系统的通讯是系统最关健的部分,要做到100%的稳定可靠。  E、信号和模块类型的匹配  开关量模块、模拟量模块和传感器、通讯线等选型必须由经验丰富的工程师来进行,比如模拟量模块并不一定选用隔离模块,但在什么情况下选用隔离模块就须要有丰富工程经验。一般如下:  ? 开关量采用无源接点输入,不使用有源输入;  ? 模拟量采用隔离方式  ? 通讯线进行隔离或最好采用光纤  ? 模拟量信号只能单边接地。  2、现场施工  工程现场条件错综复杂,必须由相当施工经验的工程师来进行现场施工指挥,  最大限度的减少各种干扰。进场前,需由工程设计人员对现场工程师进行相关事项的说明,包括各个注意事项,特殊施工要求等等。现场施工人员需进行相应的培训。施工人员必须按图施工,对线路要标示清楚,特别是接地线不可遗漏。有时一条线接错导致整个系统有问题。  3、现场测试  测试讲究方法,分步骤进行。出现问题后要善于分析,系统化、有条理的进行。分步骤进行测试,找出问题所在,再对问题进行相应处理。  4、试车  试车的工作需各个单位配合,事前需制订详细的计划,现场统一指挥,分工合作以确保试车有效及安全。  在实际工作中,试车的计划往往被忽略,如果事先没有做好协调工作,场面会乱作一团。因此必须由经验丰富人士进行各方面协调。  伍、五种技术  1、仪表技术  仪表的选型非常重要,若选型不对将无法使用,给后续工作带来很大的不便。在使用前,需对仪表进行校准,以便测试准确。所以对仪表有两个要求,选型正确,测量准确。  2、PLC设计  包括系统设计、柜体设计、施工图设计、程序设计、接线设计等,在设计过程中需考虑到前面说到的一道、二天、三地。  3、现场技术  指接地、电源、管路布置、电缆敷设、施工安全等技术,正规施工会有一系列报导手则。比如说电缆,大到走线方式,小于压接端子都有要求。  4、通讯技术  指系统通讯设计,通讯线选型及布线、施工、测试等。通讯一般根据工程需要选择。  5、SCADA技术  指系统设计、上位机组态画面、数据库设计、打印报表设计等,为方便操作和管理自控系统进行人性化设计。  结合实际应用情况,举相关案例来进行情况描述。  案例一:  某一电厂用了ANCO公司EIO_2000系列的EUI_08模块采集信号,在同一通讯线上放了6个模块,模块通讯会中断,重上电后能通讯上,但马上又会断开。  1、 从现场看,模块24VDC供电从PS307接出,此电源性能稳定,排除电源引起干扰的情况。  2、EUI_08模块大部分接PT100,K型、T型热电偶信号,观察控制柜内进线排,电缆统一采用了屏蔽双绞线,且屏蔽端编辫接到接地排上,由现场接地网统一接地。现场干扰应能屏蔽。为确保起见,将模块接线端子拔除,观察模块通讯状况未变,排除干扰由信号端引起的可能。  3、将控制柜内线槽盖板打开,发现模块间通讯线采用二根单线,无接地,线槽布线较乱,有可能产生干扰。模块连到控制器采用五类线,距离短,在槽内走线单一,分折认为这里干扰少。  从以上分折后发现问题可能出在模块间通讯线上,解决办法是将通讯线换成屏蔽双绞线,屏蔽端接地。经实地更换后,通讯正常。
全年征稿 / 资讯合作联系邮箱:
凡本网注明"来源:中国智能制造网"的所有作品,版权均属于中国智能制造网,转载请必须注明中国智能制造网,http://www.gkzhan.com。违反者本网将追究相关法律责任。
企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
周排行月排行
TCL集团发布公告称,其参股子公司深圳市雷鸟科技有限公司与
Counterpoint Research在慕尼黑国际博览会上分享了对“物联
桑迪亚去年探索了3D打印的太阳能电池板,最近又开发出由3D打
本次大会聚焦“互联引领创新 数据决胜未来”主题,由中国信
25日,GE Additive推出了一种全新的增材制造系统,即Arcam E
去年工信部下发文件:要求到2020年,NB-IoT网络实现全国普遍
联想集团副总裁、懂的通信总经理王帅博士谈到,模组是物联网
近年来,随着智能安防监控摄像机的不断升级,越来越多电子警
4月28日,Digitimes发文称,富士康电子、英业达、大立光电和
大众汽车宣布正与滴滴出行洽谈组建一家合资企业,以管理部分
4月22日举办的首届数字中国建设峰会上,工信部信息通信发展
近日,国际数据公司(IDC)“全球半年刊3D打印支出指南”更新
近日,日本一个机器人提名为多摩市市长候选人,承诺将对所有
近日,由中国通号研发的全球首套时速350公里高铁自动驾驶系
TCL集团发布公告称,其参股子公司深圳市雷鸟科技有限公司与
5g技术凭借高速率、大容量、低延迟的显著优点,在政府、通信
4月28日,Digitimes发文称,富士康电子、英业达、大立光电和
大众汽车宣布正与滴滴出行洽谈组建一家合资企业,以管理部分
4月22日举办的首届数字中国建设峰会上,工信部信息通信发展
近日,国际数据公司(IDC)“全球半年刊3D打印支出指南”更新
近日,日本一个机器人提名为多摩市市长候选人,承诺将对所有
近日,由中国通号研发的全球首套时速350公里高铁自动驾驶系
TCL集团发布公告称,其参股子公司深圳市雷鸟科技有限公司与
5g技术凭借高速率、大容量、低延迟的显著优点,在政府、通信
div作为国内首屈一指的电子信息产业博览会,工业和信息化部联合深圳市原子吸收分析中四大干扰的原因和消除办法
我的图书馆
原子吸收分析中四大干扰的原因和消除办法
定义:试样在转移、蒸发过程中物理因素变化引起的干扰效应,主要影响试样喷入火焰的速度、进样量、雾化效率、原子化效率、雾滴大小等。因素:溶液的粘度、表面张力、密度、溶剂的蒸汽压和雾化气体的压力等。特点:物理干扰是非选择性干扰,对各种元素影响基本相同。消除方法:1)&配置相似组成的标准样品,采用标准加入法;2)&尽可能避免使用粘度大的硫酸、磷酸来处理试样;3)&当试样浓度较高时,适当稀释试液也可以抑制物理干扰。&定义:待测元素与其它组分之间的化学作用,生成了难挥发或难解离的化合物,使基态原数目减少所引起的干扰效应。主要影响到待测元素的原子化效率,是主要干扰源。特点:化学干扰是选择性干扰。因素:1)分子蒸发:待测元素形成易挥发卤化物和某些氧化物,在灰化温度下蒸发损失;2)形成难离解的化合物(氧化物、炭化物、磷化物等);3)氧化物:较难原子化的元素B、Ti、Zr、V、Mo、Ru、Ir、Sc、Y、La、Ce、Pr、Nd、U;&4)很难原子化的元素:Os、Re、Nd、Ta、Hf、W;5)炭化物:Be、B、Al、Ti、Zr、V、W、Si、U 稀土等形成难挥发炭化物;6)磷化物:Ca3PO4等。消除方法:1)提高火焰温度使得难解离的化合物较完全基态原子化。2)加入释放剂,与干扰元素生成更稳定或更难挥发的化合物,使待测元素释放出来。常用的释放剂:LaCl3、Sr(NO3)2等。(如:火焰原子吸收法测定钙,磷酸盐的存在会生成难挥发的Ca2P2O7,此时可以加入LaCl3,则La3+与PO43-生成热更稳定的LaPO4,抑制了磷酸根对钙测定的干扰。)3)加入保护剂,待测元素形成稳定的络合物,防止待测元素与干扰物质生成难挥发化合物。常用的保护剂:EDTA、8-羟基喹林、乙二醇等。(如:火焰原子吸收法测定钙,磷酸盐的存在会生成难挥发的Ca2P2O7,加入EDTA,生成EDTA-Ca络合物,该络合物在火焰中易于原子化,避免磷酸根与钙作用。)4)加入基体改进剂,改变基体或被测元素的热稳定性,避免化学干扰,这些化学试剂称为基体改进剂。(如:测定海水中Cu、Fe、Mn,加入基体改进剂NH4NO3,使NaCl基体转变成易挥发的NH4Cl和NaNO3,使其在原子化之前低于500℃的灰化阶段除去。)5)化学分离法,用化学方法将待测元素与干扰元素分离。常用的化学分离法:萃取法、离子交换法、沉淀法。&&定义:某些易电离元素在火焰中产生电离,使基态原子数减少,降低了元素测定的灵敏度,这种干扰称为电离干扰。电离干扰的程度与火焰温度及元素种类有关。消除方法:采用低温火焰或在试液中加入过量的更易电离的化合物(消电离剂),能够有效地抑制待测元素的电离。在火焰温度下,消电离剂首先电离,产生大量的电子,抑制了被测元素的电离。常用的消电离剂:CsCl、KCl、NaCl等&&定义:光谱干扰主要分为谱线干扰和背景干扰两种。主要来源于光源和原子化器。一、谱线干扰和抑制定义:发射线的邻近线的干扰:指空心阴极灯的元素、杂质或载气元素的发射线与待测元素共振线的重叠干扰。吸收线重叠的干扰:指试样中共存元素吸收线与待测元素共振线的重叠干扰。抑制:减小单色器的光谱通带宽度,提高仪器的分辨率,使元素的共振线与干扰谱线完全分开。或选择其它吸收线等方法抑制谱线干扰。&二、背景干扰和抑制:定义:背景干扰主要是指原子化过程中产生的分子吸收和固体微粒产生的光散射干扰效应。背景干扰抑制和消除:(1)火焰:改变火焰类型、燃助比、调节火焰观测区高度。石墨炉:选用适当的基体改进剂。(2)光谱背景的校正A、用邻近非共振线校正背景用分析线测量原子吸收与背景吸收的总吸光度,在分析线邻近选一条非共振线,此时测出的是背景吸收,两次测量值之差即为校正背景后的吸光度。这种校正方法准确度较差,只适用于分析线附近背景分布比较均匀的情况。B、用连续光源校正背景用锐线光源测定分析线的原子吸收和背景吸收的总吸光度再用氘灯(紫外区)或碘钨灯(可见区)在同一波长测定背景吸收,计算两次测定吸光度之差,即为校正背景后的吸光度。由于空心阴极灯与氘灯两种连续光源放电性质不同,能量分布不同,会导致背景校正不足或过度。C、用塞曼效应校正背景塞曼效应校正背景基于磁场将吸收线分裂为具有不同偏振方向的组分,利用这些分裂的偏振成分来区别被测元素和背景吸收。塞曼效应校正背景的准确度高,但仪器价格较贵。(文章来源:互联网)
TA的最新馆藏
喜欢该文的人也喜欢开关电源产生干扰的主要原因分析【建材吧】_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:83,330贴子:
开关电源产生干扰的主要原因分析收藏
功率开关器件的高额开关动作是导致开关电源产生电磁干扰(EMI)的主要原因。开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
1、开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在 阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐 波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生 尖峰干扰。
2、交流输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。
3、二极管的反向恢复时间引起的干扰
交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。由电流波形可知,电流中含有高次谐波。大量电流谐波分量流入电网,造成对电网的谐波污染。另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
4、其他原因
元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布 置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。这增加了PCB分布参数的提取和近场干扰估计的难度。信息来源:
登录百度帐号单片机、电路板
连接器、接插件
其他元器件
GSM干扰问题分析
GSM干扰问题分析
 干扰的大小是影响网络高质高效运行的关键因素,其对通话质量、掉话、切换、拥塞等均有显著影响。  1.干扰问题的解决流程  1.1 对GSM系统有影响的干扰源  在移动通信系统中,基站在接收较远的移动台的信号时,往往不仅受到周围其它通信设备的干扰,而且还受到本系统另一个基站或移动台的干扰,见图1。图1 移动通信干扰示意图  对GSM系统有影响的干扰源主要有:  (1) 网内干扰  由于频率规划不当或频率复用过于紧密所
&&&  干扰的大小是影响网络高质高效运行的关键因素,其对通话质量、掉话、切换、拥塞等均有显著影响。  1.干扰问题的解决流程  1.1 对GSM系统有影响的干扰源  在移动通信系统中,基站在接收较远的移动台的信号时,往往不仅受到周围其它通信设备的干扰,而且还受到本系统另一个基站或移动台的干扰,见图1。图1 移动通信干扰示意图  对GSM系统有影响的干扰源主要有:  (1) 网内干扰  由于频率规划不当或频率复用过于紧密所引起的同频干扰或邻频干扰。  (2) 直放站干扰  直放站是早期网络建设普遍采用的扩展基站覆盖距离的有效方式,由于其自身的特点,如果使用不当容易形成对基站的干扰,直放站存在以下两种干扰方式:  i) 由于直放站本身安装不规范,施主天线和用户天线没有足够的隔离度,形成自激,从而影响了该直放站所依附基站的正常工作。  ii)对于采用宽频带非线性放大器的直放站,其互调指标远远大于协议要求。如果功率开得比较大,其互调分量很大,非常容易对附近的基站形成干扰。  (3) 其它大功率通信设备的干扰  主要包括雷达站、模拟基站以及其它同频段通讯设备等。  (4) 硬件故障  i) TRX故障:如果TRX因生产原因或在使用过程中性能下降,可能会导致TRX放大电路自激,产生干扰。  ii) CDU或分路器故障:CDU中的分路器和分路器模块中使用了有源发大器,发生故障时,也容易导致自激。  iii)杂散和互调:如果基站TRX或功放的带外杂散超标,或者CDU中双工器的收发隔离过小,都会形成对接收通道的干扰。天线、馈管等无源设备也会产生互调。  1.2 干扰问题的定位和排除  (1) 定位和排除步骤  i) 根据关键性能指标(KPI)确定干扰小区  掉话率、切换成功率、话务量、拥塞率、干扰带等指标的突然恶化,意味着该小区可能存在干扰。  此时还应该检查这些小区的操作记录历史。检查最近是否增加或修改基站硬件、是否修改过数据。干扰的出现是否与这些操作存在时间上的关联性。  如果此阶段没有数据调整,则干扰来自于硬件本身或网外干扰。建议先重点检查硬件是否存在故障;如果排除硬件故障后仍然存在干扰,则重点检查是否存在网外干扰。  ii)检查OMC告警  有时掉话率高、切换成功率低、拥塞率高可能与设备故障有关,检查OMC告警记录可以节约您大量的判断分析时间,这也是分析告警记录与这些指标恶化存在时间上的关联性。  iii) 检查频率规划  对于怀疑存在干扰的小区,检查该小区及其周围小区的频率规划。弄清基站位置分布以及各小区的方位角,画出拓扑图,并标明BCCH/TCH频点、BSIC。同时把规划的频点与BSC中实际配置的频点比较,检查是否存在出入。  根据准确的频率规划拓扑图,可以推断网络可能存在的同邻频干扰。  iv)检查小区参数设置  某些小区参数如CRO、切换门限、切换统计时长/持续时间(P/N准则)、邻区关系会对干扰有影响。  CRO设置太大,MS被引导到一个实际接收电平低于周围小区,同时比较空闲的小区上,一旦通话且C/I不能满足大于12dB的门限要求时,就会带来干扰。  如果漏配邻区,手机将不能及时切换到信号电平和质量更好的小区上,也会导致干扰。切换门限、P/N准则过大,小区之间切换困难,也将导致轻微干扰(如质量差切换增加)。但P/N准则太小时更危险,过于频繁的切换不但增加掉话的几率,同时增加了系统负荷,甚至会带来更严重的后果。  v)路测  路测是定位干扰问题的有效方法。有两种路测方式:空闲模式测试和专用模式测试。  在空闲模式测试时,测试设备可以测量服务小区和邻区的信号电平。也可以对指定频点或频段进行扫频测试,以便发现越区覆盖信号可能造成的干扰。  在专用模式测试时,测试设备可以测量服务小区和邻区的信号电平、接收质量、功率控制登记、时间提前量TA等。当在某些路段持续出现高电平(Rx_Lev&-80dBm)、低质量(Rx_Qual&6)时,则可以断定该路段存在干扰。有些测试设备能够直接显示帧删除率(FER),通常当FER &25%后,用户就会感觉到话音的断续,也即在这些路段存在干扰。  vi)干扰排除  根据上述定位结果分别调整。最后还应经过KPI指标、路测结果对干扰排除效果进行评估。  (2) 硬件故障定位和排除  当怀疑某小区可能存在干扰时,应首先检查该小区所在基站是否工作正常。在远端应检查有无天馈告警,有无TRX告警,有无基站时钟告警等;在近端则应检查有无天线损坏、进水;馈管(包括跳线)损坏、进水;CDU故障、TRX故障、基站跳线接错、时钟失锁等。  i) 天线性能下降  天线作为无源器件,损坏的概率很小,但如果真有天线损坏或性能下降,也将导致话音质量差的问题。  ii)天馈接头故障  GSM的射频信号属于微波信号,从TRX&&CDU&&馈管&&天线之间任何部分出现接触不良,都会引起驻波比过大、互调增加,从而导致出现干扰。  iii)天线接反  天线接反是常见问题,天线接反后将导致小区所用频点与规划频点完全不一样。将带来同频、邻频干扰,导致掉话、切换困难等现象。对于频率资源少的网络,天线接反对网络质量的影响更加显著。  iv) 基站跳线接错  基站TRX到天线之间有很多跳线,跳线的张冠李戴将导致掉话率高的现象。  v) TRX故障  TRX的故障将导致干扰增大、覆盖减小、接入困难等故障现象。  vi)时钟失锁  基站时钟偏差过大,一方面会导致手机难以锁定在基站的频率上,导致手机切入失败,或不能驻留在该基站的小区上;另一方面会使基站不能正确地解码手机信号,导致误码。要注意的是:时钟失锁并不会带来真正的干扰,但由于传输误码的增加也会导致话音质量下降。  vii) 小结  基站的TRX、CDU、馈管、天线、跳线、接头种的任何一部分出现故障,都有可能导致干扰和掉话现象。因此,在发现干扰问题后,应首先检查并排除基站硬件故障。另外,基站时钟失锁也会导致干扰和掉话。  硬件故障较易处理,多数情况可以通过单板互换,话统数据来定位解决。当然如果就近有频谱仪可用,可以更加便于快速定位问题。当某些小区在没修改网上数据的运行过程中突然出现干扰,尤其要重点排查硬件故障。  (3) 网内干扰  GSM网内干扰主要来自于同频和邻频干扰。当C/I<12dB或C/A<-6dB时,干扰就不可避免。采用紧密复用后,也会增加干扰出现的概率。  i)同邻频干扰  GSM中不可避免要频率复用,当两个使用同一频点的小区之间的复用距离相对小区半径太小时,就容易引起同频干扰。根据经验,很多种情况下的频率复用必须避免。图2 蜂窝小区  如图2中的A~D基站,假设小区A-3分配了频点N,则频点N不能分配给A1、A2、B1、B2、B3、C1、C2、C3、D1、D2、D3;频点N&1不能分配给A1、A2、A3、B1、C2、D1、D2(不跳频时)。  对于上行频点的干扰可借助话统中的干扰带统计数据来判断。  对于下行频点上的干扰,使用现有路测设备可以通过间接测量来确认有无同频干扰。首先在服务区内让测试手机锁定在该小区采用持续通话模式进行路测。如果发现在某些区域接收信号较高而接收质量持续很低,则在该频点上存在同频干扰的概率很大。  ii) 越区覆盖导致干扰  一个设计合理的网络就是让每个小区只覆盖基站周围的区域,手机驻留(或通话)在距离最近的小区上。越区覆盖是指某小区的服务范围过大,在间隔一个以上的基站后仍有足够强的信号电平使得手机可以驻留或切入。越区覆盖是实际小区服务范围与实际服务范围严重背离的现象,带来的影响有:话务吸收不合理,干扰,掉话,拥塞,切换失败等。  iii) 紧密复用引起干扰  容量与质量是一对矛盾。在市区由于用户数多,有时不得不采用紧密复用的频率规划技术以满足容量的需要,这实际上就是牺牲一部分的质量来换取容量的增加。在一些基站布局不合理的地方,采用紧密复用技术后容易导致同邻频的碰撞。  (4) 直放站干扰  使用直放站具有一定的方便性,但如果直放站的质量不达标或安装使用不当也是干扰的主要来源。  (5) 网外干扰  网外干扰源有电视台、大功率电台、微波、雷达、高压电力线,模拟基站等。  2 干扰案例  2.1 天线性能下降导致干扰  【问题描述】  某县城中有5个基站,配置为S4/4/4或S6/6/6。大部分小区TCH性能测量话统中干扰带5达到15以上。OMC无任何告警信息。  【问题定位与解决】  (1) 对存在问题的小区登记24小时的干扰带统计任务,发现干扰带5主要在白天出现,凌晨几乎没有。  (2) 凌晨打开所有基站的空闲BURST发送,发现这些小区干扰带在凌晨也出现了,停止发送空闲BURST后干扰带又消失。这一现象可以判断,干扰来自网内,与其它通信设备无关。  (3) 干扰出现之前没有调整过网上的频率及其它如何数据,因此出现的干扰也与频率规划无关。  (4) 在白天话务高峰时用频谱仪观察CDU的RXM测试口,可以看到强烈的宽带干扰和底噪抬高现象,并且不稳定。  (5) 因为该基站的其中一个小区几乎没有干扰,另外两个小区有强干扰,晚上把该基站内有干扰和无干扰的天馈更换(在机柜顶部换跳线),发空闲BURST,发现干扰跟着天馈走。这一步进一步定位故障在天馈系统。  (6) 在塔顶更换跳线,也就是更换天线,发现干扰跟着天线走,因此可以排除馈管原因,天线存在问题的可能性较大。  (7)通过借用双极化天线,上塔更换天线后,强干扰立即消失。将另一个基站的一个强干扰小区换上新天线后,干扰也消失了。  2.2 网内干扰导致掉话  【问题描述】  客户反映某地掉话较多,图3为该地基站分布、掉话位置以及频率规划拓扑图。图3 基站分布、掉话位置以及频率规划拓扑图  图中112、107、120、124、118、122、104、106、116、101、110、113为BCCH频点,109、102、115、96、98、100、111、114、108为TCH频点。  【问题分析与解决】  (1) 经详细测试发现掉话位置竟然有112频点,且电平高达-73dBm ,手机占上111频点时,由于112频点的干扰而掉话。  (2) 经手机测试112频点的CGI,该频点是D3小区的BCCH频点。  (3) 前往基站D查看,发现D3小区天线安装在楼顶一个平台上,而离天线约8m 比天线低约4m的地方有一房子,全是玻璃结构。在靠近天线面处测试。天线发射信号约-45dBm,但靠近玻璃测试信号强度居然有-30dBm。原因是信号被玻璃全反射后产生的信号叠加造成形成二次波源反射到掉话位置。  (4) 建议更改天线安装位置,同时作为应急,修改频点:将基站A的111频点同114频点互换,将A3小区天线下倾角加大,根据实际情况将C1小区的113频点方向角调整,避免同互换后的114频点干扰。  (5) 经过改动后测试一切正常。基站C的113频点不会对114频点造成干扰,掉话消失。  2.3 直放站干扰  【问题描述】  某地用户反映无法占用信道进行通话,或占用信道后杂音很大,而此时手机的信号很强。该地区共有两个定向基站,第1小区的天线方位角均为正北方向,在用户投诉之前该地区基站运行正常,网络指标均符合要求。问题出现后从话统指标看,此两个基站的话务量明显减小,并且此两个基站分别在第一小区和第三小区话务量减小特别明显,通话时信号很强,但话音质量很差。在话统中可以看到这四个小区的干扰带处于三、四、五级,基本上95%的信道被干扰,其它小区也有不同程度的干扰。OMC无任何告警信息。  【问题分析与解决】  (1) 从用户反馈的情况来看,可能原因有:传输存在问题,导致误码很大产生此现象;天馈部分存在问题,导致该问题的产生;硬件故障导致该问题产生;可能存在网内或网外干扰。  (2) 该地区正北偏西方向可能有很强的上行干扰信号,导致此两个基站的一、二、三小区存在不同程度干扰,其中一、三小区尤为严重。  (3) 通过现场实际拨测发现,在基站覆盖的一、三小区范围内,很难打通电话,即使打通电话,话音质量很差,声音断续严重,同时伴有强烈的干扰。如果在该地区用手机拨打固定电话,固定电话很难听清手机声音,而与此相反,手机听固定电话的声音很清楚,这也证实了前面的分析,可能是因为来自外部的干扰造成该现象的出现,或是因为天线存在驻波问题导致该现象出现。(从这一点可以判断干扰仅存在于上行链路)  (4) 现场用天馈分析仪进行测试,没有发现任何基站本身的问题。经多方了解,得知该地区新建了一个直放站,直放站的位置正好在这两个基站的正北偏西方向大约两公里的地方,并且直放站开通的时间也正好是基站出现干扰问题的时间;经现场测试,发现只要将直放站关闭,基站马上恢复正常,干扰带也恢复正常,打电话也正常;相反,直放站打开,基站马上会出现无法打通电话的现象,或打通后干扰很大。最后协调关闭直放站后,基站通话恢复正常。  2.4 微波干扰  【问题描述】  在维护过程中发现BSC话统中某S2/2/2基站的2、3小区掉话率突然增高,掉话率在某些时间段为20%左右。  【问题分析与解决】  (1) 查看BSC话统发现该基站从8:30左右干扰带TCH空闲数目在干扰带3-5开始增加,10:00左右TCH空闲数目基本处于干扰带4、5中,22:00左右TCH空闲数目基本处于干扰带1中。从以上现象可以判断有干扰存在。  (2) 由于该基站以前运行情况良好,所以可以排除频率规划问题。  (3) 从TRX管理消息中发现该基站2、3小区4块单板均存在干扰,由于4块单板同时损坏的概率极小,由此可排除TRX问题。但为慎重起见曾更换一块TRX板,干扰现象无改善。  (4) 查看所有BSC话统数据发现该基站附近的所有基站与该基站2、3小区在同方向的小区均不同程度存在干扰,并发现干扰严重小区SDCCH信道(共16个信道)有时会被同时占用,但根据用户量,SDCCH被同时占用的概率极小。由此可基本断定上行有外界干扰存在。但该干扰可能与频点无关,只与方向有关。  (5) 为了进一步定位问题,从机顶把1、3小区跳线交换,发现1小区出现干扰、而3小区干扰消失,由此证实以上判断。  (6) 由于干扰影响与频点无关,可能是大功率信号进入基站系统,导致基站干扰。  (7) 用频谱仪从基站分路器输出口测量,发现在904MHz频点(与使用频点有5M间隔)有大功率信号存在,在干扰比较严重的基站该信号电平高达-25dBm 左右,在其他基站信号电平为-50dBm左右。由此可判定是该信号对基站的影响。  (8) 用频谱仪对基站附近进行扫频发现有一小微波天线在904频点有大信号输出。  (9) 关闭该微波设备,干扰消除。
上一篇:已经是第一篇
型号/产品名
广州焱行贸易有限公司
广州焱行贸易有限公司
成都乐川废旧物资回收有限公司
深圳市福田区庞源配件城市场谢敏虹通讯配件柜
深圳市福田区庞源配件城市场谢敏虹通讯配件柜}

我要回帖

更多关于 码间干扰产生的原因 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信