什么元器件可以实现逻辑脉冲多功能脉冲治疗仪的

扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
用单片机实现可编程逻辑器件的配置
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口您的位置: >
摘 要: 介绍了在系统可编程(ISP)技术及ISP器件的特点。分析了变M/T转速测量电路的工作原理。并由高密度ISP器件设计了位置控制系统单片I/O电路。运行结果表明所设计的电路完全达到设计要求。
&&& 关键词? 在系统可编程 高密度逻辑器件 变脉冲数/脉冲周期 数字I/O电路
&&& 在系统可编程(ISP)技术及其器件是90年代迅速发展起来的一种新技术与新器件。它使我们能在产品设计、制造过程中对产品中的器件、电路板乃至整个电子系统的逻辑和功能随时进行组态或重组。采用这种器件开发的数字系统,其升级与改进是极其方便的。由于采用先进的技术,就保证了这种器件具备10000次以上的擦写能力。
&&& 高密度ISP器件像任何其它器件一样可以在印刷电路板(PCB)上处理,因此编程这种器件不需要专门的编程器和复杂的流程。编程时仅需一根接口电缆,便可将命令和数据下载到ISP器件。采用传统的逻辑设计技术,一旦系统按要求设计完成后,若要升级,进行硬件修改,排除硬件故障,是很困难的和不经济的。然而,采用ISP器件进行设计,在设计、制造完成后,如果需要重新组态、升级,只需采用软盘升级方法,在现场就可重新组态逻辑。在设计、开发过程中,设计的验证是必不可少的,它可以使设计者及时发现问题,并加以修正,确保最终的设计无误。ISP器件在设计完成后可立即编程,进行软件仿真,以利于及早发现设计中的问题。这种软件仿真可以非常方便地检查设计的内部节点,而测试向量和输入激励都可通过软件编程实现。
&&& 用ISP器件取代传统的标准集成电路、接口电路、专用集成电路已成为数字技术发展的趋势。在构成数字系统时,这种器件具有下述特点:由于一片ISP器件的集成规模可达数千乃至数万个PLD等效门,可以代替数十个至数百个分立器件,因此能够大大缩小硬件系统的体积、减轻重量、降低功耗;还可以提高系统的可靠性,使之易于获得高性能、具有很强的保密性;同时也可降低系统成本。
&&& 1 I/O电路组成
&&& 1.1 变M/T转速测量法分析
&&& 由于光电式测速系统具有低惯量、低噪声、高分辨率和高精度的优点,因而常用于高精度交流伺服电机转速的测量。其工作原理是:与交流伺服电机同轴的光电编码器随电机的旋转,产生与转速成正比的两相(A相、B相)相隔π/2电脉冲角度的正交编码脉冲,经过四倍频电路细分后产生四倍频脉冲信号。脉冲计数电路对四倍频脉冲信号进行计数,再由数字信号处理器(DSP)对其采样,并将该采样值与固定频率的高频时钟脉冲的计数值进行比较、计算后便可得到被测交流伺服电机的瞬时转速。在测量转速时所用的变脉冲数/脉冲周期测速法(变M/T速法)是为了解决常用的M/T测速法所存在的检测时间过长、测速误差较大而提出的。变M/T测速法在测速过程中,不仅被测的脉冲信号频率fm随电机的转速不同而变化,而且检测时间T也是随电机的转速不同而变化,检测时间T将始终等于被测脉冲信号的Mp个脉冲周期之和,如图1所示。
&&& 由图可见,通过测量时间T和在此时间内计数器对被测脉冲信号的计数值Mp就可以确定电机的转速。检测时间T可由计数器对频率为fc的时钟脉冲所得的计数值Mc获得,即T=Mc/fc。设电机每转发出t个光电编码脉冲,四倍频后每转可得到4t个测速脉冲,则对应的转角为θ=2πMp/(4t)。由此可以得到变M/T法的转速测量值计算公式:n=60θ/(2πT)=60fcMp/(4tMc) (r/min)。常用的变M/T法的测量电路如图2所示。
&&& 其测量方法是:由R、C及门电路等分立器件构成的模拟微分式或积分式四倍频电路对光电编码器的A相和B相正交编码脉冲信号进行四倍频细分。由两片通用计数器8253芯片、一片8255芯片、一片8259芯片及数个D触发器构成采样和计数电路,其中一片8253芯片用于计数测速脉冲,另一片用于计数时钟脉冲。采样定时器发出的采样信号,送至D触发器(1#),使其输出置“1”,当四倍频脉冲的上升沿到达D触发器(2#)时D触发器(2#)置“1”,经R、C单稳电路后,一路送至8259芯片的IRO端,作为中断请求信号;另一路送D触发器(3#)作为1#、2#计数器8253芯片的通道切换信号;第三路使D触发器(1#、2#)清“0”。 1#、2# 8253芯片的A口、B口的门控极GATE分别由D触发器(3#)的Q及端控制。当Q=1、=0时,A口进行计数,B口保持前一检测周期的计数值,以供CPU读取。当下一个采样信号到来时将使Q=0、=1,则情况正好与前相反,B口计数,A口保持。CPU通过检测8255芯片的PB1口,便可判断应该读A口还是B口。
&&& 上述分立器件电路存在着很多不足。(1) 常用的模拟微分型或积分型四倍频电路实现起来比较麻烦而且工作稳定性较差。一者,电路中电容的取值既要保证相邻的倍频脉冲不重叠,又要防止由于电容值过大导致后级门电路因输入电流过大而损坏;二者,由于电阻、电容的精度很低,由此构成的四倍频电路的脉冲周期很难保持一致,而变M/T法又要求在同一速度下四倍频后的脉冲周期保持严格一致;再者,由于电阻、电容的值随运行时间、温度的变化会发生变化,同样会对脉冲周期产生影响。?(2)由分立器件构成的变M/T法测量电路存在着电路结构复杂的缺点,除电阻、电容外,还需要十几片各种门电路、触发器、外围芯片等。由于器件较多,易受外界噪声的干扰,抗干扰能力较差。(3)上述测量电路在每次中断响应时CPU都要发出六个读信号,首先读电机转向信号及通道切换信号,CPU对读入的通道切换信号进行判断后再读1# 及2# 计数器A口或B口的高8位及低8位计数数据。数据采样频率很低。
&&& 1.2 脉冲宽度调制(PWM)电路及位置给定信号计数电路
&&& PWM电路包括PWM信号生成器及驱动电路,常采用PWM集成电路或分立器件组成。PWM信号生成的方法较多,组成的电路也各不相同。但基本原理都是通过控制逆变器开关器件的导通关断时间比(即调节脉冲宽度)来控制交流电机定子电流的幅值与频率,从而达到控制交流电机转速的目的。
&&& 常用的位置伺服控制系统,转速的控制都分立于位置闭环控制。不仅国内,即使国外进口的交流伺服系统,也大多只提供模拟转速指令输入端口。因此,在设计位置控制系统时,即使采用进口的交流伺服系统,也需要设计位置控制板,组成硬件位置闭环控制,以便处理上位工控机发出的位置给定信号(数字量),即在位置控制板中将位置给定信号与反馈信号比较、控制后通过D/A转换器转换为模拟转速给定量(模拟电压),输出至交流伺服系统,进行转速控制。也可以组成软件位置闭环控制,即由上位机对位置信号采样后进行计算、控制,并输出数字量的转速给定信号,由位控板中的D/A器件转换为模拟转速给定量(模拟电压),以控制转速。
&&& 这些电路同样存在很多不足。一者,整个位置控制系统较庞大,使用的元器件也很多;二者,转速的给定都需经过数字量→模拟量→数字量(在交流电机的数字控制中需要进行这一步转换)的转换,其转换精度难以保证。
&&& 2 全数字I/O电路
&&& 为克服上述电路的不足,我们利用Lattice公司的高密度在系统可编程逻辑器件ISPLSI1032-80设计了单片全数字I/O电路。该器件的集成规模为6000PLD等效门,一片高密度在系统可编程逻辑器件完全可以容纳整个全数字I/O电路,而且同一个芯片内的门电路、触发器、三态门等的参数特性完全一致。另外,由于所有电路做在一个片子上,抗干扰性能比分立器件构成的电路也有极大的提高。
&&& 由ISP器件构成的数字I/O电路包括:变M/T法转速测量电路、速度给定数据存储电路、PWM形成电路三部分。
&&& 2.1 变M/T法转速测量电路
&&& 该电路包括采样信号构成电路、数字四倍频电路、12位测速脉冲计数器A、16位高频时钟脉冲计数器B、数据锁存器(29位)、输出三态门(29位)。其电路结构如图3所示。因为ISP器件的I/O单元作为输出时具有三态缓冲特性,故利用其中的29个I/O单元构成输出三态门,连到DSP的32位数据总线上。该输出三态门的门控信号由门控信号产生电路将DSP的READ信号、IOSTRB信号及片选信号组合而成,该信号接到29个输出三态门的输出使能端上,供DSP读取。中断响应时只需要一次读就可将电机转向信号、四倍频测速脉冲计数值、高频时钟脉冲计数值读入DSP中。数字四倍频电路将光电编码器发出的正交编码脉冲(A相、B相)细分后产生四倍频脉冲供计数、采样使用。同时,正交编码脉冲还将产生电机转动方向信号。采样信号构成电路将DSP发出的速度采样脉冲及数字四倍频电路输出的脉冲综合后,按数据锁存、中断申请、计数器清零的顺序发出脉冲信号,控制采样逻辑的顺序。测速脉冲计数器、高频时钟脉冲计数器是根据电机每转输出的脉冲数及最高转速设计的12位及16位不可逆计数器。
&&& 2.2 转速给定数据存储电路
&&& 该电路包括16位数据锁存器、输出三态门(16位)、中断信号产生电路。其作用是将上位机发出的转速给定数字信号锁存在数据锁存器中,并向DSP发出中断请求信号。当DSP响应中断时,通过门控信号产生电路发出门控信号,控制16个输出三态门的输出使能端,将数据锁存器中转速给定数字信号读到DSP中,作为速度环的给定信号。
&&& 2.3 PWM信号产生电路
&&& 该电路包括6位PWM数据锁存器、PWM时序电路、锁存延时器。DSP定时发出写数据信号,其数据总线中的一位与地址译码器译码信号在锁存延时器中组合,延时器的输出锁存信号确保数据总线上的数据被正确地锁存至PWM数据锁存器中。其输出经过PWM时序电路的调节与时序校正,产生PWM信号。PWM时序电路同时保证PWM信号以先关断、后开通的方式控制智能功率器件,避免相同桥路上的功率器件同时导通而发生短路事故。
&&& 全数字I/O电路设计完成后,首先利用软件仿真器进行了软件仿真调试工作,在软件调试的基础上还进行了硬件调试。硬件调试完成后,将ISP器件作为脉冲信号发生器以产生其它器件所需的脉冲调试信号,进行电路板的硬件调试,从而加快整个硬件系统的调试工作。所设计的单片全数字I/O电路已用于全数字交流位置伺服控制系统中,运行结果表明位置伺服精度达到设计目标。
非常好我支持^.^
不好我反对
相关阅读:
( 发表人:发烧友 )
评价:好评中评差评
技术交流、我要发言
发表评论,获取积分! 请遵守相关规定!提 交
Powered by: 电子发烧友 (
. .All Rights Reserved 粤ICP备号基于单片机的复杂可编程逻辑器件快速配置方法
&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&
& 今天是:&&& 欢迎您光临[3edu教育网]!本站资源完全免费,无须注册,您最希望得到的,正是我们最乐于献上的。
◆您现在的位置:&&>>&&>>&&>>&&>>&&>>&论文正文
基于单片机的复杂可编程逻辑器件快速配置方法
基于单片机的复杂可编程逻辑器件快速配置方法
基于单片机的复杂可编程逻辑器件快速配置方法
摘要:介绍基于SRAM的可重配置CPLD的原理,通过对多种串行配置的比较,提出了由单片机和FLASH存储器组成的串行配置方式,并从系统复杂度、可靠性和经济性等方面进行了比较和分析。
&&& 关键词:复杂可编程逻辑器件 静态随机存储器 被动串行
基于SRAM(静态随机存储器)的可重配置PLD(可编程逻辑器件)的出现,为系统设计者动态改变运行电路中PLD的逻辑功能创造了条件。PLD使用SRAM单元来保存配置数据。这些配置数据决定了PLD内部的互连关系和逻辑功能,改变这些数据,也就改变了器件的逻辑功能。由于SRAM的数据是易失的,因此这些数据必须保存在PLD器件以外的EPROM、EEPROM或FLASH ROM等非易失存储器内,以便使系统在适当的时候将其下载到PLD的SRAM单元中,从而实现在电路可重配置ICR(In-Circuit Reconfigurability)。
本文介绍笔者设计的PLD ICR控制电路,它不但线路结构简洁、开发容易、体积小、成本低,并且在图2介绍的ICR控制电路中,其存储PLD配置数据的FLASH存储器采用并行总线,交换速度较快。然而PLD配置数据较大,通常都在数十千字节以上。如何提高图2介绍的ICR控制电路的配置速度,使系统上电后的最短的时间内完成配置而进入正常工作状态,软件设计上的一个重点。1 基于SRAM的可重配置CPLD的结构与原理
早期的可编程逻辑器件大多采用紫外线可擦除只读存储器(EPROM)和电可擦除只读存储器(EEPROM)方式。如GAL系列、EPF7064、EPF7128等。由于其结构简单、规模小,只能完成简单数字逻辑功能。此后,出现了一类结构上稍复杂的基于SRAM存储器的可编程芯片,即复杂可编程逻辑器件(CPLD),它能完成各种数字逻辑功能。
采用这些结构的可编程逻辑器件有ALTERA公司的FLEX、ACEX、APEX系列,XILINX公司的Spartan、Virtex系列。多年来,ALTERA公司一直致力于CPLD的开发。近几年,该公司又推出了很有竞争力的CPLD器件,即灵活的逻辑单元阵列的FLEX(Flexible Logic Element Matrix)系列产品。相对于其它一些厂家的FPGA产品来说,ALTERA公司的FLEX系列产品有其独特之处。这主要表现在高密度、在线配置功能、高速度和连续式布线结构等方面。
查找表LUT(Look-Up-Table)是基于SRAM的可重配置PLD的一个重要组成部分,LUT本质上就是一个RAM。目前CPLD中多使用4输入的LUT,所以每一个LUT可以看成个有4位地址线的16×1bit的RAM。当用户通过GDF原理图或VHDL语言描述了一个逻辑电路后,CPLD开发软件会自动计算逻辑电路的所有可能结果,并把结果事先存入查找表。这样,当多信信号进行逻辑运算时就等于输入一个地址进行查表,找出地址所对应的内容,然后将其输出即可。2 可编程逻辑器件的配置原理
首先在开发软件MAX+PLUS II的ASSIGN菜单下选择将要采用的基于SRAM的器件名称。经过编译、优化、逻辑综合、仿真等步骤达到设计要求后,软件会自动产生一个编程文件(扩展名为.SOF文件)。对于基于SRAM工艺的可编程逻辑器件(如ALTERA的所有FLEX、ACEX、APEX系列,XILINX的Sparten、Vertex系列),由于SRAM存储器的特点,掉电后数据会消失,因此在调试期间可以采用并口ByteblasteMV下载电缆多次重复配置PLD器件。当电路设计成功,调试完成后,需要将配置数据烧写固化在一个由ALTERA生产的专用EEPROM(如EPC1441)中。上电时,由这片配置EEPROM先对PLD加载数据,几十毫秒后,PLD即可正常工作。
CPLD器件的工作状态分为三种:首先是上电配置状态(Configuration Mode),将编程的数据装入CPLD器件的过程,也可称之为构造;然后是初始化状态(Initialization Mode),在配置完成后,CPLD器件复位内部各类寄存器,让I/O引脚为逻辑器件正常工作做准备;最后是用户状态(User Mode),指电路中CPLD器件正常工作时的状态。
ALTERA公司具有ICR功能的PLD器件有FLEX8000、FLEX10K、APEX和ACEX系列,它们的配置方式可分为PS、PPS和JTAG(Joint Test Action Group)等方式。PS方式因PLD与配置电路的互连最简单,对配置时钟的最小频率没有限制而应用最广泛,因此在ICR控制电路中通常采用PS配置方式来实现ICR功能。
被动串行(PS)配置方式:在该配置方式下,由ByteblasteMV下载电缆产生一个由低到高的跳变送到nCONFIG引脚脚复位PLD,然后将配置数据送到DATA0引脚,直到CONF_DONE引脚变为高电平。图1是PS配置方式的时序图。CONF_DONE变成高电平后,DCLK必须多余十个周期来初始化该器件。器件的初始化由下载电缆自动执行。在PS方式中没有握手信号,所以配置时钟的工作频率必须低于10MHz。在多器件PS配置方式中,第一片PLD的nCEO引脚级联到下一片PLD的nCE引脚。在配置完第一个器件后,nCEO输出为低,使第二个PLD器件的nCE有效,开始对第二块器件进行配置。
3 用WINBOND78E58单片机配置可编程逻辑器件
用单片机配置可编程逻辑器件与上述PS配置方式原理一致,只需模拟PS配置方式中DATA0、DCLK、nCONFIG、CONF_DONE、nSTATUS引脚的配置时序,将配置数据串行移入PLD。配置引脚的功能如表1所示。
3.1 硬件设计
用单片机配置PLD,可以使用普通输入输出口或单行口。使用普通I/O口(如P1口),向PLD发送1Bit数据至少需要4个指令周期。一个指令给DATA0赋值,两个指令产生DCLK时钟,一个指令移位取数据。如果晶振为fosc,一个指令周期为12/fosc,因此它的下载速率为fosc/48。然而如果采用串行口方式0,其下载速率提高为fosc/12。考虑到PLD配置文件数据比较大,通常都在数十千字节以上(其配置文件大小如表2),为了加快配置速度,并适合各种不同规模的PLD,采用了WINBOND78E58单片机。表1 配置引脚功能说明
器件复位脚(该信号线的上升沿使配置开始)
状态位(在配置完成后,该信号线为高)
状态位(如果该信号线为低,表明在配置过程中出现错误,需重新配置)
表2 各种CPLD配置文件大小
配置数据大小(Bits)
配置文件大小(Kbytes)
APEX 0K1000EAPEX 20K600EAPEX 20K400EAPEX 20K300EAPEX 20K200EAPEX20K100EPF10K100EEPF10K70EPF10K40EPF10K30EPF10K20EPF10K10
8,938,0005,564,0003,878,0002,733,0001,950,000985,0001,336,000892,000498,000376,000231,000118,000
1,02968047433323812116410961462915
注:配置文件大小由.rbf文件决定
该单片机外接晶振最大频率为40MHz,它在串行口方式0下波特率可设置为fosc/4。另外通过设置特殊功能寄存器CKCON的MD0、MD1、MD2三位,可以将MOVX、MOVC等指令周期缩短至2个机器周期。与普通单片机相比,可使配置时间大为缩短。WINBOND78E58单片机内部拥有32KB FLASH ROM.由配置文件数据表2可知,只需一片单片机就可以对EPF10K20系列以下的PLD进行配置了。本系统中使用了一片APEX20K300E,因此在硬件电路设计中,扩展了一片WINBOND29C040 FLASH存储器(容量为512KB),其电路如图2。DATA0与RXD、DCLK与TXD、nCONF与P15、CONFIG_DONE与P16、nSTATUS与P17分别相连。
3.2 软件设计
在软件编程时,使用了串行口移位寄存器输入输出方式。本系统只需用到输出方式,串行数据通过RXD引脚输出,而在TXD引脚输出移位时钟。当一字节数据写入串行数据缓冲器SBUF时,就开始发送。在此期间,发送控制器送出移位信号,使发送移位寄存器的内容右移一位,直至最高位(D7位)数字移出后,停止发送数据和移位时钟脉冲。RXD、TXD时序如图3。由图3可知,它可以用来模拟配置时序。发送完一字节数据后,硬件置发送标志位TI为1,向CPU申请中断。若CPU响应中断,则从0023H单元开始执行串行中断服务程序。
为了提高配置速度,单片机程序用汇编语言编写。单片机上电后使nCONFIG脚由低到高复位待配置PLD;当判断到nSTATUS为高后,开始从外部FLASH存储器取数据串行移位。配置过程中,查询CONF_DONE。一旦为高,配置完成,但还要送40个DCLK脉冲,PLD才能进入用户工作状态。
用户设计PLD程序经MAXPLUS II或QUARTUS编译后将产生后缀后为.sof的SRAM目标文件。该文件含有除配置数据以外的控制字符,不能直接写入到PLD中去,需要利用软件的编程文件转换功能将文件转换成.rbf(Raw Binary File)十六进制文件。把.rbf文件烧写到存储器中,单片机通过MOVX指令读入后,串行移位到PLD。&&& 部分asm语言源程序如下:
NCONFIG BIT P1.5
CONFDONE BIT P.6
NSTATUS BIT P1.7
CLR SM1 ;SM0,SM1为0,串口工作于方式0
CLR SM2 ;串口波特率为fosc/4
ANL 8EH,#0f8h ;地址8EH是CKCON单元,MD0、MD1、MD2清0
WJRESTART:CLR NCONFIG
SETB NCONFIG ;上升沿复位PLD
WAIT:JNB NSTATUS,WAIT ;NSTATUS为高,可进行配置
WJPEIZHI:MOV P1,COUNTER3
MOV DPH,COUNTER2
MOV DPL,COUNTER1 ;配置数据大,需3个单元作地址记数
MOVX A,@DPTA
MOV SBUF,A ;串行移位
NOP ;采用填充2个空指令,正好使一个字节发送完成,可发送下一个字节
INC COUNTER1 ;地址加
MOV A,COUNTER1
JB CONFDONE,WJEND1
CJNE A,#0,WJPEIZHI
INC COUNTER2
NOV A,COUNTER2
CJNE A,#0,WJPEIZHI
INC COUNTER3
LJMP WJPEIZHI
WJEND1:MOV R0,#60
WJEND:WOV A,#55H
MOV SBUF,A ;由此产生40个DCLK时钟
DJNZ R0,WJEND
WERE:LJMP HERE ;配置完成,进入用户工作模式
使用OTP(One Time Programming)器件配置CPLD具有一定的冒险性,一次简单的代码更换就可能意味着更换OTP器件,并重新开始所有的程序。被动串行微处理器(Passive Serial With Processor)配置方式以EEPROM为基础,允许对这些存储器进行多次编程,所有其它芯片都无需从已装配的印制电路板上拆卸下来。高速读写周期的FLASH存储器能确保1万次编程,而且能对任何以SRAM为基础的PLD下载。该方式除了在加电期间能承载配置数据外,还有许多方便之处。例如,用户可以将多个配置文件.rbf分区编程到外部存储器的未用区段,通过单片机读取不同存储区可以将可编程逻辑器件在线配置成多种不同的工作模式。
《基于单片机的复杂可编程逻辑器件快速配置方法》一文由3edu教育网www.3edu.net摘录,版权归作者所有,转载请注明出处!
【温馨提示】3edu教育网所有资源完全免费,仅供学习和研究使用,版权和著作权归原作者所有,如损害了您的权益,请与站长联系修正。
上一篇论文: 下一篇论文:利用可编程逻辑器件实现灵活的电源管理 (1)
18:55:44&&&来源:互联网 &&
  一般是指涉及供电方面的相关问题。该相关问题包含:  o选择各种DC-DC转换器为电路板供电  o电源供应排序/追踪  o电压监测  o上述全部  在本文中,电源管理被简单定义为:对电路板上的所有电源进行管理(包括DC-DC转换器及LDO等)。电源管理功能包含:  o管理电路板上DC-DC控制器——例如热插拔、缓启动、排序、追踪、裕度和微调。  o产生所有电源供应相关状态和控制逻辑讯号——例如重置讯号产生、电源错误指示(监测)和电压管理。图1展示了一个采用CPU或微处理器电路板的典型电源管理功能。  图1:电路板上的典型电源管理功能。  热插拔/缓启动控制功能可用来限制突波电流以减少供应电源的启动负载。对插入带电背板的电路板来说,这是个很重要的功能。  电源供应排序和追踪功能可在达到电路板上所有组件对顺序的需求下,控制多个电源的开/关。  所有供应电压都被错误(过压/欠压)监测,以向处理器就即将发生的电源供应错误进行预警。该功能也被归类为监督功能。  当电源启动时,重置产生功能提供处理器一个可靠的启动电压。有些处理器会要求重置讯号在其内部所有电源供应都稳定后,仍能运作一段时间,这也被称作重置脉冲展延。重置产生器的功能是当电源供应发生错误情况时,使处理器保持在重置模式,以防止电路板上闪存无意中被破坏的情况。  传统电源管理方案的限制  传统电路板上的任何电源管理功能都是由个别单功能IC来执行的。不同的供应电压组合有不同的IC型号可使用。因此,市面上就有来自不同厂商数以万计针对多重电源供应管理需求的单功能IC。  例如,若要选择一款重置产生器IC型号,必须提供以下信息:  o该重置产生器IC需监测的供应电压  o供应电压组合(3.3、2.5、1.2或 3.3、2.5、1.8等)  o错误侦测电压(3.3V-5%、3.3V-10%等)  o准确性(3%、2%、1.5%等)  o重置附加电容的重置脉冲扩展功能  o手动重置输入  为应付所有可能产生的变化,一家厂商可能就有几百个重置产生器IC型号。若工程师在设计过程中(很可能)需要增加另一个电压进行监测,必须选择一个额外且不同型号的IC。类似地,许多单功能IC的型号也会随着些微功能的不同而有所差异,这些功能包括热插拔控制器、电源供应排序器和电压监测/检测器等。多重电路板系统中的任何电路板均需要不同组的单功能IC,材料成本也因而增加。  日益增加的电路板复杂性  若单功能电源管理IC曾经是可管理的,那也已经是过去式了。大多数典型的电路板目前都使用若干多重电压组件,每个组件都有电源排序需求。具有更小型晶体管的组件需要带有增强电流的较低电源供应电压。设计者常常被要求利用每个多重电压IC的负载点电源,因此,电路板上的电源供应数就增加了。随着电源供应路径的增加以及对多重排序管理的需求,电源管理也变得更加复杂。  随着电路板变得更复杂,传统的电源管理方案便显得难以招架。目前,利用传统单功能IC执行电源管理的设计师要不是得牺牲监测某些电源供应,不然就得为个别电源管理功能选择多个单功能组件。这两种方法都不让人满意。  电路板空间增加却降低了可靠性  单功能IC数的增加以及相关的互连不仅使电路板面积加大,从统计学的角度来看,还降低了电路板的可靠性。举例来说,不断增加的组装错误可能会导致不可预知(必然是不好)的结果。<p style="word-break: margin: 10 pa
编辑:探路者
本文引用地址:
本周热门资源推荐
EEWORLD独家}

我要回帖

更多关于 多功能脉冲治疗仪 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信