以太网与光纤的区别和令牌环网有什么区别????急求答

在局域网介质访问控制法中,冲突现象的发生存在于( )方法中A.以太网
B.令牌总线网
C.令牌环网
D.上述情况均存在
为您推荐:
扫描下载二维码您的位置: >
以太网(Etherner).以太网技术标准有哪些?
以太网(Ethernet)指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。是当今现有局域网采用的最通用的通信协议标准。 以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。
随着网络技术飞速发展,多媒体应用愈来愈多,对网络的需求也越来越大,尤其是在服务器端上,100Mbps的速度已不能满足要求。于是Gigabit Ethernet诞生了。就如同Fast Ethernet的起源一样,Gigabit Ethernet也必须要能够向下相容Fast Ethernet以及Ethernet。目前中大型企业新一代的区域网络规划中,Gigabit Ethernet普遍使用在区域网络的骨干上,并以光纤界面为主流。在铜线(UTP)Gigabit部分,短期内则还不会像100baseTX那样快速延伸至桌面。
以太网最初是由Xerox公司研制而成的,并且在1980年由DEC公司和Xerox公司共同使之规范成形。后来它被作为802.3标准为电气与电子工程师协会(IEEE)所采纳。
以太网的基本特征是采用一种称为载波监听多路访问/冲突检测CSMA/CD(Carrier Sense Multiple Access/Collision Detection)的共享访问方案,即多个工作站都连接在一条总线上,所有的工作站都不断向总线上发出监听信号,但在同一时刻只能有一个工作站在总线上进行传输,而其他工作站必须等待其传输结束后再开始自己的传输。冲突检测方法保证了只能有一个站在电缆上传输。早期以太网传输速率为10Mbps。 以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。  1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。  梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。  它不是一种具体的网络,是一种技术规范。   该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
以太网技术标准
采用CSMA/CD(载波监听多路存取和冲突检测)介质访问控制方式的局域网技术,最初由Xerox公司于1975年研制成功,1979年7月-1982年间,由DEC、Intel和Xerox三家公司制定了以太网的技术规范DIX,以此为基础形成的IEEE802.3以太网标准在1989年正式成为国际标准。在20多年中以太网技术不断发展,成为迄今最广泛应用的局域网技术,产生了多种技术标准。
10base5;是原始的以太网标准,使用直径10mm的50欧姆粗同轴电缆,总线拓扑结构,站点网卡的接口为DB-15连接器,通过AUI电缆,用MAU装置栓接到同轴电缆上,末端用50Ω/1W的电阻端接(一端接在电气系统的地线上);每个网段允许有100个站点,每个网段最大允许距离为500m,网络直径为2500m,可由5个500m长的网段和4个中继器组成。利用基带的10M传输速率,采用曼彻斯特编码传输数据。
10Base2;是为降低10base5的安装成本和复杂性而设计的。使用廉价的R9-58型50欧姆细同轴电缆,总线拓扑结构,网卡通过T形接头连接到细同轴电缆上,末端连接50欧姆端接器;每个网段允许30个站点,每个网段最大允许距离为185m,仍保持10Base5的4中继器、5网段设计能力,允许的最大网络直径为5x185=925m。利用基带的10M传输速率,采用曼彻斯特编码传输数据。与10base5相比,10Base2以太网更容易安装,更容易增加新站点,能大幅度降低费用。
10base-T;是1990年通过的以太网物理层标准。10base-T使用两对非屏蔽双绞线,一对线发送数据,另一对线接收数据,用RJ-45模块作为端接器,星形拓扑结构,信号频率为20MHz,必须使用3类或更好的UTP电缆;布线按照EIA568标准,站点-中继器和中继器-中继器的最大距离为100m。保持了10base5的4中继器、5网段的设计能力,使10base-T局域网的最大直径为500m。10Base-T的集线器和网卡每16秒就发出"滴答"(Hear-beat)脉冲,集线器和网卡都要监听此脉冲,收到"滴答"信号表示物理连接已建立,10base-T设备通过LED向网络管理员指示链路是否正常。双绞线以太网是以太网技术的主要进步之一,10base-T因为价格便宜、配置灵活和易于管理而流行起来,现在占整个以太网销售量的90%以上。
10base-F;是使用光缆的以太网,使用双工光缆,一条光缆用于发送数据,另一条用于接收;使用ST连接器,星形拓扑结构;网络直径为2500m,定义了3种不同的规范:
10Base-FL;是10base-F中使用最多的部分,只有10base-FL连接时,光缆链路段的长度可达到2000m,与FOIRL设备混用时,混合段的长度可达1000m。
10Base-FB;是用来说明一个同步信令骨干网段,用于在一个跨越远距离的转发主干网系统中将专用的10Base-FB同步信令中继器连接在一起。单个10base-FB网段最长可达2000m。
10Base-FP;是用来说明点对点的连接方式,一个网段的长度可达500m。一个光缆无源星形耦合器最多可连接33台计算机。 100base-T;是以太网标准的100M版,1995年5月正式通过了快速以太网/100Base-T规范,即IEEE 802.3u标准,是对IEEE802.3的补充。与10base-T一样采用星形拓扑结构,但100Base-T包含4个不同的物理层规范,并且包含了网络拓扑方面的许多新规则。
100Base-TX;使用两对5类非屏蔽双绞线或1类屏蔽双绞线,一对用于发送数据,另一对用于接收数据,最大网段长度为100m,布线符合EIA568标准;采用4B/5B编码法,使其可以125MHz的串行数据流来传送数据;使用MLT-3(多电平传输-3)波形法来降低信号频率到125/3=41.6MHz。100Base-TX是100Base-T中使用最广的物理层规范。
100Base-FX;使用多模(62.5或125um)或单模光缆,连接器可以是MIC/FDDI连接器、ST连接器或廉价的SC连接器;最大网段长度根据连接方式不同而变化,例如:对于多模光纤的交换机-交换机连接或交换机-网卡连接最大允许长度为412m,如果是全双工链路,则可达到2000m。100Base-FX主要用于高速主干网,或远距离连接,或有强电气干扰的环境,或要求较高安全保密链接的环境。
100Base-T4;是为了利用大量的3类音频级布线而设计的。它使用4对双绞线,3对用于同时传送数据,第4对线用于冲突检测时的接收信道,信号频率为25MHz,因而可以使用数据级3、4或5类非屏蔽双绞线,也可使用音频级3类线缆。最大网段长度为100m,采用EIA568布线标准;由于没有专用的发送或接收线路,所以100Base-T4不能进行全双工操作;100base-T4采用比曼彻斯特编码法高级得多的6B/6T编码法。
100Base-T2;随着数字信号处理技术和集成电路技术的发展,只用2对3类UTP线就可以传送100Mbps的数据,因而针对100Base-T4不能实现全双工的缺点,IEEE开始制定100Base-T2标准。100Base-T2采用2对音频或数据级3、4或5类UTP电缆,一对用于发送数据,另一对用于接收数据,可实现全双工操作;采用RJ45连接器,最长网段为100m,符合EIA568布线标准。采用名为PAM5x5的5电平编码方案。
自动协商模式;在100Base-T问世以后,在以太网RJ-45连接器上可能出现的信号可能是5种以上不同的以太网信号(10Base-T、10base-T全双工、100base-TX、100Base-TX全双工或100Base-T4)中的任一种。为了简化管理,3.11.71 IEEE已推出了Nway(IEEE自动协商模式),它能使集线器和网卡知道线路另一端能有的速度,把速度自动调节到线路两端能达到的最高速度(优先的顺序为:100Base-T2全双工,100Base-T2,100Base-TX全双工,100Base-T4,100Base-TX,100Base-T全双工,10Base-T)。这是增强型的10Base-T链路一体化信号方法,并与链路一体化反向兼容。这种技术避免了由于信号不兼容可能造成的网络损坏。具有这种特性的装置仍允许人工选择可能的模式。
非常好我支持^.^
不好我反对
相关阅读:
( 发表人:admin )
评价:好评中评差评
技术交流、我要发言
发表评论,获取积分! 请遵守相关规定!提 交
Copyright &
.All Rights ReservedPHP has encountered an Access Violation at 041AA013求教基带与频带的区别?
-电子产品世界论坛
求教基带与频带的区别?
求教基带与频带的区别?
常说基带传输和频带传输,它们有什么区别呢?
什么叫频带信号?
各位大虾帮帮我这菜鸟啊...
怎么没人回复的呢?
看了拉NCNE二级知识讲解
一、基带和宽带传输
  1. 基带(Baseband)传输:直接使用数字信号传输数据时,数字信号几乎要占用整个频带,终端设备把数字信号转换成脉冲电信号时,这个原始的电信号所固有的频带,称为基本频带,简称基带。在信道中直接传送基带信号时,称为基带传输。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
  2. 宽带(Broadband)传输:在讨论宽带传输前,先要解释一下什么是频带传输。当采用模拟信号传输数据时,往往只占用有限的频带,对应基带传输将其称为频带传输。通过借助频带传输,可以将链路容量分解成两个或更多的信道,每个信道可以携带不同的信号,这就是宽带传输。宽带传输中的所有信道都可以同时发送信号。如CATV、ISDN等。
二、串行和并行通信
  1. 并行(Parallel)通信:数据以成组的方式在多个并行信道上同时传输。例如将构成1个字符代码的几位二进制比特位分别在几个并行线路上传输,每个比特使用一个单独的线路。并行通信非常普遍,特别是用于两个短距离的设备之间。最常见的例子是计算机和外围设备之间的通信,如打印电缆。其他的例子还包括CPU、存储器模块和设备控制器之间的通信。
  并行通信应用到长距离的连接时就无优点可言了。首先,在长距离上使用多条线路要比使用一条线路昂贵。另外一个问题涉及到比特传输所需要的时间。短距离时,多个信道上同时传输的比特几乎总是能够同时收到。但长距离时,导线上的电阻会或多或少地阻碍比特的传输,从而使它们的到达稍快或稍慢,这将给接收端带来麻烦。
  2. 串行(Serial)通信:数据流以串行方式在一条信道上传输,即在一条线路上逐个的传送所有的比特。这种传输方式给发送设备和接收设备增加了额外的复杂性。发送方必须明确比特发送的顺序。例如在发送一个字节的8个比特位时,发送方必须确定是先发送高位比特还是先发送低位比特。同样,接收方必须知道一个目标字节中收到的第一个比特位应该放在什么位置上。如果串行通信的双方在比特的顺序上无法取得一致,则数据的传输将出现错误。
  由于串行通信的收、发双方只需要有一条传输信道,比较便宜又易于实现,而且用在长距离连接中也比并行通信更加可靠,因此是目前广泛采用的一种方式。但是它每次只能发送一个比特位,所以传输速度比较慢。
三、单工/半双工/全双工通信
  1. 单工(Simplex)通信:数据信号只能沿着一个方向上传输,发送方只能发送不能接收,接收方只能接收而不能发送。任何时候都不能改变信号传输的方向。例如无线电广播和电视广播。
  2. 半双工(Half-Duplex)通信:数据信号可以沿两个方向传输,但两个方向不能同时发送数据,必须交替进行。半双工通信适用于会话式通信,例如警察使用的“对讲机”和军队使用的“步话机”。
  3. 全双工(Full-Duplex)通信:数据信号可以同时沿两个方向传输,两个方向可以同时进行发送和接收。例如电话。
再一次多谢
是不是因为数字是脉冲的,所以频谱占据整个频带?
匿名不能发帖!请先 [
Copyright (C) 《电子产品世界》杂志社 版权所有以太网是什么数据类型
以太网是什么数据类型
以太网以太网(Ethernet)是一种计算机局域网组网技术。IEEE制定的IEEE 802.3标准给出了以太网的技术标准。它规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术。它很大程度上取代了其他局域网标准,如令牌环网(token ring)、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switch hub)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detect 即带冲突检测的载波监听多路访问)的总线争用技术。目录  以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。  以太网(EtherNet)  以太网最早由Xerox(施乐)公司创建,于1980年DEC、lntel和Xerox三家公司联合开发成为一个标准。以太网是应用最为广泛的,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3。  IEEE 802.3标准  IEEE802.3规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术,它很大程度上取代了其他局域网标准。如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。  常见的802.3应用为:  10M: 10base-T (铜线UTP模式)  100M: 100base-TX (铜线UTP模式)  100base-FX(光纤线)  1000M: 1000base-T(铜线UTP模式)  标准以太网    开始以太网只有10Mbps的,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法。这种早期的10Mbps以太网称之为标准以太网,以太网可以使用粗、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接。并且在IEEE 802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段长度(基准单位是100m),Base表示“基带”的意思,Broad代表“”。  ·10Base-5 使用直径为0.4英寸、阻抗为50Ω粗同轴电缆,也称粗缆以太网,最大长度为500m。基带传输方法,为总线型。10Base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、、收发器、收发器电缆、终结器等。  ·10Base-2 使用直径为0.2英寸、为50Ω细同轴电缆,也称细缆以太网,最大网段长度为185m,基带传输方法,拓扑结构为总线型;10Base-2组网主要硬件设备有:细同轴电缆、带有BNC插口的以太网卡、中继器、T型连接器、终结器等。  ·10Base-T 使用双绞线电缆,最大网段长度为100m。拓扑结构为星型;10Base-T组网主要硬件设备有:3类或5类非屏蔽双绞线、带有RJ-45插口的以太网卡、集线器、、RJ-45插头等。  · 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;  ·10Broad-36 使用同轴电缆(RG-59/U CATV),网络的最大跨度为3600m,网段长度最大为1800m,是一种宽带传输方式;  ·10Base-F 使用光纤传输介质,传输速率为10Mbps。  快速以太网    随着的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MⅡ、、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。  快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。  · 100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SPT 1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。  · 100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和(62.5和125um)。多模光纤连接的最大距离为550米。连接的最大距离为3000米。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用MIC/FDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。  · 100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。100Base-T4使用4对双绞线,其中的三对用于在33MHz的频率上传输数据,每一对均工作于模式。第四对用于CSMA/CD冲突检测。在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。  千兆以太网  千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地保护投资。此外,IEEE标准将支持最大距离为550米的、最大距离为70千米的和最大距离为100米的铜轴电缆。千兆以太网填补了802.3以太网/快速以太网标准的不足。  为了能够侦测到64Bytes资料框的碰撞,千兆以太网(Gigabit Ethernet)所支持的距离更短。Gigabit Ethernet 支持的网络类型,如下表所示:  传输介质 距离  1000Base-CX Copper STP 25m  1000Base-T Copper Cat 5 UTP 100m  1000Base-SX Multi-mode Fiber 500m  1000Base-LX Single-mode Fiber 3000m  千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。  ⒈ IEEE802.3z  IEEE802.3z工作组负责制定光纤(单模或多模)和的全双工链路标准。IEEE802.3z定义了基于光纤和短距离铜缆的1000Base-X,采用8B/10B编码技术,信道传输速度为1.25Gbit/s,去耦后实现1000Mbit/s传输速度。IEEE802.3z具有下列千兆以太网标准:  · 1000Base-SX 只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。  · 1000Base-LX 单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为nm,传输距离为5km左右。  · 1000Base-CX 采用150欧屏蔽双绞线(STP),传输距离为25m。  ⒉ IEEE802.3ab  IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。IEEE802.3ab标准的意义主要有两点:  ⑴ 保护用户在5类UTP布线系统上的投资。  ⑵ 1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些。  四、万兆以太网  万兆以太网规范包含在 IEEE 802.3 标准的补充标准 IEEE 802.3ae 中,它扩展了 IEEE 802.3 协议和 MAC 规范,使其支持 10Gb/s 的传输速率。除此之外,通过 WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如 9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET) STS -192c 传输格式相兼容。  · 10GBASE-SR 和 10GBASE-SW 主要支持短波(850 nm)(MMF),光纤距离为 2m 到 300 m。  10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。  10GBASE-SW 主要用于连接 SONET 设备,它应用于远程数据通信。  · 10GBASE-LR 和 10GBASE-LW 主要支持长波(1310nm)(SMF),光纤距离为 2m 到 10km (约32808英尺)。  10GBASE-LW 主要用来连接 SONET 设备时,  10GBASE-LR 则用来支持“暗光纤”(dark fiber)。  · 10GBASE-ER 和 10GBASE-EW 主要支持超长波(1550nm)单模光纤(SMF),光纤距离为 2m 到 40km (约131233英尺)。  10GBASE-EW 主要用来连接 SONET 设备,  10GBASE-ER 则用来支持“暗光纤”(dark fiber)。  · 10GBASE-LX4 采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在 1310nm 的多模或单模暗光纤方式下。该系统的设计目标是针对于 2m 到 300 m 的多模光纤模式或 2m 到 10km 的单模光纤模式。  △ 以太网的连接    所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。早期以太网多使用总线型的,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。  管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的、对核心设备的可靠性要求高。采用专用的网络设备(如集线器或)作为核心节点,通过双绞线将中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比型多,但布线和比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。  以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特·梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。1977年底,梅特卡夫和他的合作者获得了“具有冲突检测的多点数据通信系统”的专利。多点传输系统被称为CSMA/CD(带冲突检测的载波侦听多路访问),从此标志以太网的诞生。  ,梅特卡夫为了开发个人电脑和离开了施乐,成立了3Com公司。3com对迪吉多,英特尔,和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于日出台,当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。  梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。  它不是一种具体的网络,是一种技术规范。  该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。  以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到器间的点到点链路上。同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。  注意区分双绞线中的直通线和交叉线两种连线方法.  以下连接应使用直通电缆:  交换机到路由器以太网端口  计算机到交换机  计算机到集线器  交叉电缆用于直接连接 LAN 中的下列设备:  交换机到交换机  交换机到集线器  集线器到集线器  路由器到路由器的以太网端口连接  计算机到计算机  计算机到路由器的以太网端口  带冲突检测的载波侦听多路访问 (CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:  开始- 如果线路空闲,则启动传输,否则转到第4步&发送- 如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转到第4步.&成功传输- 向更高层的网络协议报告发送成功,退出传输模式。线路忙- 等待,直到线路空闲&线路进入空闲状态- 等待一个随机的时间,转到第1步,除非超过最大尝试次数&超过最大尝试传输次数- 向更高层的网络协议报告发送失败,退出传输模式 就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。  最初的以太网是采用来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个的不稳定。  因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。  [3-5]  以太网卡可以工作在两种模式下:半双工和全双工。  :半双工传输模式实现以太网载波监听多路访问冲突检测。传统的共享LAN是在半双工下工作的,在同一时间只能传输单一方向的数据。当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。  全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了。例如在上例的车站间又加了一条并行的铁轨,同时可有两列火车双向通行。在双全工模式下,冲突检测电路不可用,因此每个双全工连接只用一个端口,用于点对点连接。标准以太网的传输效率可达到50%~60%的带宽,双全工在两个方向上都提供100%的效率。  以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。  以太网的工作过程如下:  当以太网中的一台主机要传输数据时,它将按如下步骤进行:  1、监听信道上是否有信号在传输。如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。  2、若没有监听到任何信号,就传输数据  3、传输的时候继续监听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到监听信道状态。  注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)  4、若未发现冲突则发送,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。  以太网帧的概述:  以太网的帧是的封装,网络层的被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。  冲突(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据冲突。当冲突发生时,物理上的数据都不再有效。  冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。  影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。  广播:在网络传输中,向所有连通的发送消息称为广播。  广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。  广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。非目的节点的主机虽然收到该数据帧但不做处理。  广播是指由广播帧构成的数据流量,这些广播帧以(地址的每一位都为“1”)为目的地址,告之网络中所有的计算机接收此帧并处理它。  共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器(集线 器)为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。  集线器的工作原理:  集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个发出一个广播信息,集线器会将这个广播传播给所有同它相连 的节点,因此它也是一个单一的广播域。  集线器的工作特点:  集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为“多端口”。  集线器同中继器一样都是工作在物理层的网络设备。  共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所 有端口都要共享同一带宽。  交换式结构:  在交换式以太网中,交换机根据收到的数据帧中的决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。  为什么要用交换式网络替代共享式网络:  ·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。  ·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。  交换机的工作原理:  ·交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。  ·交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。  ·如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。  ·广播帧和帧向所有的端口转发。  交换机的三个主要功能:  ·学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的起来存放在交换机中的MAC地址表中。  ·转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。  ·消除回路:当交换机包括一个回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。  交换机的工作特性:  ·交换机的每一个端口所连接的都是一个独立的冲突域。  ·交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。  ·交换机依据帧头的信息进行转发,因此说交换机是工作在的网络设备  交换机处理帧有不同的操作模式:  存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。帧通过交换机的转发时延随帧长度的不同而变化。  直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。  注意:  直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突 帧或带CRC错误的帧。  消除回路:  在由交换机构成的交换网络中通常设计有冗余链路和设备。这种设计的目的是防止一个点的失败导致整个网络功能的丢失。虽然设计可能消除的单点失败问题,但也导致了交换回路的产生,它会导致以下问题。  ·广播风暴  ·同一帧的多份拷贝  ·不稳定的MAC地址表  因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(Spanning Tree Protocol)的作用正在于此。  生成树的工作原理:  生成树协议的国际标准是IEEE802.1b。运行生成树算法的网桥/交换机在规定的间隔(默认2秒)内通过网桥协议数据单元(BPDU)的帧与其他交换机交换配置信息,其工作的过程如下:  ·通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。  ·其余的非根网桥只有一个通向根交换机的端口称为根端口。  ·每个只有一个转发端口。  ·根交换机所有的连接端口均为转发端口。  注意:生成树协议在交换机上一般是默认开启的,不经人工干预即可正常工作。但这种自动生成的方案可能导致数据传输的路径并非最优化。因此,可以通过人工设置网桥优先级的方法影响生成树的生成结果。  生成树的状态:  运行生成树协议的交换机上的端口,总是处于下面四个状态中的一个。在正常操作 期间,端口处于转发或阻塞状态。当设备识别网络变化时,交换机自动进行状态转换,在这期间端口暂时处于监听和学习状态。  阻塞:所有端口以阻塞状态启动以防止回路。由生成树确定哪个端口转换到转发状态,处于阻塞状态的端口不转发数据但可接受BPDU。  监听:不转发,检测BPDU,(临时状态)。  学习:不转发,学习MAC地址表(临时状态)。  转发:端口能转送和接受数据。  小知识:实际上,在真正使用交换机时还可能出现一种特殊的端口状态-Disable状态。这是由于端口或由于错误的交换机配置而导致数据冲突造成的状态。如果并非是端口故障的原因,我们可以通过交换机重启来解决这一问题。  生成树的重计算:  当网络的拓扑结构发生改变时,生成树协议重新计算,以生成新的生成树结构。当所有交换机的端口状态变为转发或阻塞时,意味着重新计算完毕。这种状态称为会聚(Convergence)。  注意:在改变期间,设备直到生成树会聚才能进行通信,这可能会对 某些应用产生影响,因此一般认为可以使生成树运行良好的交换网络,不应该超过七层。此外可以通过一些特殊的交换机技术加快会聚的时间。  网桥概述:  依据帧地址进行转发的二层网络设备,可将数个连接在一起。网桥可连接相同介质的网段也可访问不同介质的网段。网桥的主要作用是分割和减少冲突。它的工作原理同交换机类似,也是通过MAC地址表进行转发。网桥主要完成三个功能:转发、过滤数据帧;帧格式转换;传输速率转换。  透明网桥:无需改动设备的软硬件配置,即可完成LAN互连的网桥。交换机可看做多端口透明网桥。  什么是路由器:  路由器是使用一种或者更多度量因素的网络设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。  路由器的功能:  ·隔绝广播,划分广播域  ·通过路由选择算法决定最优路径  ·转发基于三层目的地址的数据包  ·其他功能  网桥/交换机的本质和功能是通过将网络分割成多个冲突域提供增强的网络服务,然而网桥/交换机仍是一个广播域,一个广播数据包可被网桥/交换机转发至全网。虽然OSI模型的第三层的路由器提供了广播域分段,但交换机也提供了一种称为VLAN的广播域分段方法。  什么是VLAN:  一个VLAN是跨越多个物理LAN的逻辑广播域,人们设计VLAN来为工作站提供独立的广播域,这些工作站是依据其功能、项目组或应用而不顾其用户的物理位置而逻辑分段的。  一个VLAN=一个广播域=逻辑网段  VLAN的优点和安装特性:  VLAN的优点:  ·安全性。一个VLAN里的广播帧不会扩散到其他VLAN中。  ·网络分段。将物理网段按需要划分成几个逻辑网段  ·灵活性。可将交换端口和连接用户逻辑的分成利益团体,例如以同一部门的工作人员,项目小组等多种用户组来分段。  典型VLAN的安装特性:  ·每一个逻辑网段像一个独立物理网段  ·VLAN能跨越多个交换机  ·由主干(Trunk)为多个VLAN运载通信量  VLAN如何操作:  ·配置在交换机上的每一个VLAN都能执行地址学习、转发/过滤和消除回路机制,就像一个独立的物理网桥一样。VLAN可能包括几个端口  ·交换机通过将数据转发到与发起端口同一VLAN的目的端口实现VLAN。  ·通常一个端口只运载它所属VLAN的通信量。  VLAN的成员模式:  静态:分配给VLAN的端口由管理员静态(人工)配置。  动态:动态VLAN可基于MAC地址、等识别其成员资格。当使用MAC地址时,通常的方式是用VLAN成员资格策略服务器(VMPS)支持动态VLAN。VMPS包括一个映射MAC地址到VLAN分配的数据库。当一个帧到达动态端口时,交换机根据帧的源地址查询VMPS,获取相应的VLAN分配。  注意:虽然VLAN是在交换机上划分的,但交换机是二层网络设备,单一的有交换机构成的网络无法进行VLAN间通信的,解决这一问题的方法是使用三层的网络设备-路由器。路由器可以转发不同VLAN间的数据包,就像它连接了几个真实的物理网段一样。这时我们称之为VLAN间路由。  快速以太网:  快速以太网(Fast Ethernet)也就是我们常说的百兆以太网,它在保持帧格式、MAC(介质存取控制)机制和MTU(最大传送单元)质量的前提下,其速率比10Base-T的以太网增加了10倍。二者之间的相似性使得10Base-T以太网现有的应用程序和网络管理工具能够在快速以太网上使用。快速以太网是基于扩充的IEEE802.3标准。  千兆以太网:  千兆位以太网是一种新型高速局域网,它可以提供1Gbps的通信带宽,采用和传统10M、100M以太网同样的CSMA/CD协议、帧格式和帧长,因此可以实现在原有低速以太网基础上平滑、连续性的网络升级。只用于Point to Point,连接介质以光纤为主,最大传输距离已达到70km,可用于MAN的建设。  由于千兆以太网采用了与传统以太网、快速以太网完全兼容的技术规范,因此千兆以太网除了继承传统以太的优点外,还具有升级平滑、实施容易、性价比高和易管理等优点。  千兆以太网技术适用于大中规模(几百至上千台电脑的网络)的园区网主干,从而实现千兆主干、百兆交换(或共享)到桌面的主流网络应用模式。  小知识:  千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。  当今居于主导地位的局域网技术-以太网。以太网是建立在CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备,不能隔绝冲突扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备。然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。  为什么叫以太网?  以太网这个名字,起源于一个科学假设:声音是通过空气传播的,那么光呢?在外太空没有空气光也可以传播。于是,有人说光是通过一种叫以太的物质传播。后来,爱因斯坦证明以太根本就不。  大家知道,声音是通过空气传播的,那么光是通过什么传播的呢?  在牛顿运动定律中,物体的运动是相对的。比如,地铁车厢里面的人看见您在车厢里原地踏步走,而位于车厢外面的人却看见你以120公里每小时的速度前进。  但光的运动并不是这样,您无论以什么物体作为参照物,它的运动速度始终都是299 792 458 米 / 秒。这个问题困惑了很多科学家,难道牛顿定律失灵了?一个来自瑞士专利局的职员,名叫爱因斯坦的人在1905年发表了篇论文,文中提到,无论观察者以何种速度运动,相对于他们而言,光的速度是恒久不变的,相对论便由此诞生了。  这简单的理念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,用爱因斯坦的方程来表达就是E=mc^2(E是能量,m是质量,c是),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。  由此我们可以看出,世界上根本就不存在以太这种物质,因为光速是永远恒定不变的,为其找个运动参照物是个笑话。有鉴于此,以太网的命名也就是一个笑话。但以太网并不会消失,它正随着人们追求高速度而不断的进行蜕变。以前,只要数据链路层遵从CSMA/CD协议通信,那么它就可以被称为以太网,但随着接入共享网络设备的增加,冲突会使网络的传输效率越来越低。后来,交换机的出现使全双工以太网得到了更好的实现。未来,以太网会披上光的外衣,飞的更快。  千兆以太网的优势是同旧系统的兼容性好,价格相对便宜。在这也是千兆以太网在同ATM的竞争中获胜的主要原因。当今居于主导地位的技术-以太网。以太网是建立在  以太网CSMA/CD机制上的广播型网络。冲突的产生是限制以太网性能的重要因素,早期的以太网设备如集线器是物理层设备。不能隔绝冲突扩散,限制了网络性能的提高。而交换机(网桥)做为一种能隔绝冲突的二层网络设备,极大的提高了以太网的性能。正逐渐替代集线器成为主流的以太网设备,然而交换机(网桥)对网络中的广播数据流量则不做任何限制,这也影响了网络的性能。通过在交换机上划分VLAN和采用三层的网络设备-路由器解决了这一问题。以太网做为一种原理简单,便于实现同时又价格低廉的局域网技术已经成为业界的主流。而更高性能的快速以太网和千兆以太网的出现更使其成为最有前途的网络技术。  ethernet采用无源的介质,按广播方式传播信息。它规定了物理层和协议,规定了物理层和数据链路层的接口以及数据链路层与更高层的接口。  ⑴物理层  物理层规定了Ethernet的基本物理属性,如数据编码、时标、电频等。  ⑵数据链路层  数据链路层的主要功能是完成帧发送和帧接收,包括负责对用户数据进行帧的组装与分解,随时监测物理层的信息监测标志,了解信道的忙闲情况,实现数据链路的收发管理。  以太网相关专业术语: 1.Ethernet switch以太网交换机2.Ethernet hub以太网集线器3.Ethernet card以太网网卡4.EtherTalk EtherTalk协议(在以太网上运行的AppleTalk协议)5.ethernet以太网6.fast Ethernet快速以太网7.gigabit Ethernet千兆位以太网,吉比特以太网8.isochronous Ethernet同步以太网9.isoEthernet同步以太网10.standard Ethernet cable标准以太网电缆11.Ethernet PON以太网无源光网络12.10baseT (Ethernet network cabling type) 10Mb双绞线以太网(以太网电缆敷设类型)13.100baseT (fast Ethernet network cabling type) 100 Mb双绞线以太网(以太网电缆敷设类型)
发表评论:
TA的推荐TA的最新馆藏}

我要回帖

更多关于 以太网与光纤的区别 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信