提取基因组DNA用于PCR扩增后dna测序电泳槽鉴定。DNA提取后电泳发现拖带和弥散严重,请高手分析下原因和解决方法

扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
一种适合于PCR扩增的真菌基因组DNA提取方法
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
单条固定线虫基因组DNA提取及18SrRNA基因PCR扩增_cropped
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口定义聚合酶链式反应简称PCR(英文全称:Polymerase&Chain&Reaction),具体内容点击:&聚合酶链式反应,简称PCR聚合酶链式反应。聚合酶链式反应,其英文Polymease&Chain&Reaction(PCR)是体外特异DNA片段的一种方法,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病病的诊断或任何有DNA,RNA的地方.聚合酶链式反应(Polymerase&Chain&Reaction,简称PCR)又称无细胞分子克隆或特异性DNA序列体外引物定向技术。&由美国科学家PE(Perkin&Elmer珀金-埃尔默)公司遗传部的Dr.&Mullis发明,由于PCRPCR技术在理论和应用上的跨时代意义,因此Mullis获得了1993年诺贝尔化学奖。
DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互聚合酶链式反应补配对原则复制成同样的两分子挎贝。在聚合酶链式反应实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。&  但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。发现耐热DNA聚合同酶--Taq酶对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。
类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①的变性:模板DNA经加热至93℃左右一定时&&聚合酶链式反应间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 体系与条件标准的PCR反应体系:PCR扩增程序10×扩增缓冲液10ul&  4种dNTP混合物各200umol/L&  引物各10~100pmol&  模板DNA0.1~2ug&  2.5u&  Mg2+1.5mmol/L&  加双或至100ul&  PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和缓冲液(其中需要Mg2+ ) 工作步骤标准的PCR过程分为三步:&  1.DNA变性(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA&  2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。&  3.延伸(70℃-75℃):在Taq酶(在72℃左右最佳的活性)的作用下,以dNTP为原料,从引物的5′端→3′&端延伸,合成与模板互补的DNA链。每一循环经过变性、退火和延伸,DNA含量既增加一倍。现在有些PCR因为扩增区很短,即使Taq酶活性不是最佳也能在很短的时间内复制完成,因此可以改为两步法,即退火和延伸同时在60℃-65℃间进行,以减少一次升降温过程,提高了反应速度。 反应特点特异性强&  PCR反应的特异性决定因素为:&  ①与模板DNA特异正确的结合;&  ②配对原则;&  ③Taq&DNA聚合酶合成反应的忠实性;&  ④的特异性与保守性。&  其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq&DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。&  灵敏度高&  PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12)量级的起始待测模板扩增到微克(μg=-6)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU();在细菌学中最小检出率为3个细菌。&  简便、快速&  PCR反应用耐高温的Taq&DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-,一般在2~4&小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。&  对标本的纯度要求低&  不需要分离病毒或细菌及培养细胞,DNA&粗制品及RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。 循环参数1、预变性(Initial&denaturation).&  模板DNA完全变性对PCR能否成功至关重要,一般95℃加热3-5分钟。&  2、引物退火(Primer&annealing)&  退火温度一般需要凭实验(经验)决定。&  退火温度对PCR的特异性有较大影响。&  3、引物延伸&  引物延伸一般在72℃进行(Taq酶最适温度)。&  延伸时间随扩增片段长短而定。&  4、循环中的变性步骤&  循环中一般95℃,30秒足以使各种靶DNA序列完全变性:&  变性时间过长损害酶活性,过短靶序列变性不彻底,易造成扩增失败。&  5、循环数&  大多数PCR含25-35循环,过多易产生非特异扩增。&  6、最后延伸&  在最后一个循环后,反应在72℃维持5-15分钟.使引物延伸完全,并使单链产物退火成双链。& 电泳检测时间 一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚至消失。&  PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及,&④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。&  模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消&化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模&板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处&理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应&固定不宜随意更改。&  酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而&导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。&  引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不&理想、容易弥散的常见原因。有些批号的质量有问题,两条引物一条浓度&高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单&位。②引物的浓度不仅要看,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。&  Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特&异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。&  反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多&大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul&后,再做大体积时,一定要模索条件,否则容易失败。 物理原因变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一。&  靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。假阳性出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。需重新设计引物。 靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。所用离心管及样进枪头等均应一次性使用。必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用方法来减轻或消除。& 出现非特异性扩增带&  PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带&与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、&或引物聚合形成二聚体。二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数&过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶&则不出现,酶量过多有时也会出现非特异性扩增。其对策有:必要时重新设计引&物。减低酶量或调换另一来源的酶。降低引物量,适当增加模板量,减少循环次&数。适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。&  出现片状拖带或涂抹带&  PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量&差,浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。其对策有:减少酶量,或调换另一来源的酶。②减少dNTP的浓度。适当降低Mg2+浓&度。增加模板量,减少循环次数。 反应五要素参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+&  引物:&引物是PCR特异性反应的关键,PCR&产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,&就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。&  设计引物应遵循以下原则:&  ①引物长度:&15-30bp,常用为20bp左右。&  ②引物扩增跨度:&以200-500bp为宜,特定条件下可扩增长至10kb的片段。&  ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。&  ④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。&  ⑤引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。&  ⑥引物中有或能加上合适的酶切位点,&被扩增的靶序列最好有适宜的酶切位点,&这对酶切分析或分子克隆很有好处。&  ⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。引物量:&每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。 酶及其浓度目前有两种Taq&DNA聚合酶供应,&一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。&  dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M&NaOH或1M&Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装,&-20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等(&等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。&  模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。SDS的主要功能是:&溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS&还能与蛋白质结合而沉淀;&蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。&  Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq&DNA聚合酶的活性,使反应产物减少。 反应条件选择PCR反应条件为温度、时间和循环次数。&  温度与时间的设置:&基于三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40&~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq&DNA&聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法,&除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq&DNA酶仍有较高的催化活性)。&  ①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃min足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。&  ②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA&比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:&  Tm值()=4(G+C)+2(A+T)&  复性温度=Tm值-(5~10℃)&  在Tm值允许范围内,&选择较高的复性温度可大大减少引物和模板间的非特异性结合,&提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。&  ③延伸温度与时间:Taq&DNA聚合酶的生物学活性:&  70~80℃&150核苷酸/S/酶分子&  70℃&60核苷酸/S/酶分子&  55℃&24核苷酸/S/酶分子&  高于90℃时,&DNA合成几乎不能进行。&  PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够&的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。 常见类型1、巢式PCR:采用两对引物进行PCR,其中第二对引物位于第一对引物内。实时定量PCR2、:采用两种不同浓度的引物。分别称为限制性引物和非限制性引物,其最佳比例一般是0.01∶0.5μM,关键是限制性引物的绝对量。&3、:是用反向的互补引物来扩增两引物以外的DNA片段对某个已知DNA片段两侧的未知序列进行扩增。4、等位基因专一PCR&:该法可用于检测点突变。如用于检测镰刀形贫血症。5、&:有一个碱基变化的两种引物在较宽松的复性条件下竞争DNA模板,&其中只有完全互补的引物才能大量配对。该法可用于测定某一DNA&片段上是否带有某一已知碱基置换。6、多重PCR:用于检测特定基因序列的存在或缺失。&7、原位PCR:直接用细胞涂片或石蜡包埋组织切片在单个细胞中进行PCR扩增。可进行细胞内定位和检测病理切片中含量较少的靶序列。8、差示PCR:利用特殊设计的引物,在RT&的基础上进行PCR,以研究不同基因的表达状况。9、实时定量PCR:实时定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,使每一个循环变得“可见”,最后通过Ct值和标准曲线对样品中的DNA&(or&cDNA)&的起始浓度进行定量的方法,实时荧光定量&PCR是目前确定样品中DNA&(或&cDNA)&拷贝数最敏感、最准确的方法。&
万方数据期刊论文
生物化学与生物物理进展
万方数据期刊论文
生物化学与生物物理进展
万方数据期刊论文
中南大学学报(自然科学版)
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和770多万专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:34次
参与编辑人数:24位
最近更新时间: 12:41:16
贡献光荣榜
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品我的试验是要做一个基因多个位点的多态性,先提取基因组DNA,然后PCR扩增目的片段,之后酶切酶切位点是哪里,怎么选择?我真的是新手,_百度作业帮
我的试验是要做一个基因多个位点的多态性,先提取基因组DNA,然后PCR扩增目的片段,之后酶切酶切位点是哪里,怎么选择?我真的是新手,
酶切位点是哪里,怎么选择?我真的是新手,
目前一般的方法是直接测序了如果酶切,若是你知道多态位点的序列,可以根据这个序列选择内切酶;如果不知道,那就多尝试一下识别位点是4个bp的那几个常用的内切酶吧
酶,是限制性内切酶。每种酶会在DNA上寻找特异的碱基排列,找到后再在特定位置进行剪切,把DNA双链剪短。跑琼脂糖电泳时就会看到,含有酶切位点的DNA变小了,而不含的维持原来大小。这种多态性检测,就是通过观察片段大小判断酶切位点碱基是否有变化。...
我觉得这个应该不难,你做的应该不是一个全新的完全没有信息的基因吧。这样的话,你就可以通过参考已知的数据库里边的信息,找到同源序列或者其他株系的序列,然后看看大概有些什么位点,然后切来看,看能不能切到大小和预期一致的片段。
你在问什么呢
那请问酶切位点就是在多态位点附近几个碱基吗?
最常见的识别序列是4-8个碱基的回文序列。用酶切法鉴定的多态位点必须在这个范围里,否则无法影响酶切
请问怎么找同源序列或者其他株系的序列
在NCBI里边,会用NCBI数据库和Blast不?
在网上找到了使用方法,操作过一会,看见看几个同源序列,接下来怎么做不清楚}

我要回帖

更多关于 毛细管电泳 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信