功放输出阻抗入阻抗 行吗

查看: 3200|回复: 6
在线时间1021 小时
阅读权限50
职业侠客, 积分 674, 距离下一级还需 326 积分
职业侠客, 积分 674, 距离下一级还需 326 积分
经验674 点
金钱620 ¥
请教一下大家觉得做功放用什么电阻好?对音色的影响真的大吗?例如做甲类功放大家觉得美国军规好还是我国的718(0.1%)的好?
在线时间14990 小时
阅读权限150
经验12103 点
金钱9904 ¥
在线时间3645 小时
阅读权限100
瞎烧、便宜烧……
罗宾汉, 积分 3240, 距离下一级还需 2760 积分
罗宾汉, 积分 3240, 距离下一级还需 2760 积分
经验3240 点
金钱3237 ¥
我常用的还是普通金属膜电阻,顶多5环的,真没选啥品牌,呵呵!!!
在线时间9140 小时
阅读权限100
青铜剑侠, 积分 6229, 距离下一级还需 18771 积分
青铜剑侠, 积分 6229, 距离下一级还需 18771 积分
经验6229 点
金钱6137 ¥
本帖最后由 农民头出身 于
14:48 编辑
听过最贵的15元一只,都是一样的线路,一样的板子来对比的,声音确实比用普通进口的如KOA、光阴等好听。还有更贵的50元一只。
看米开饭才是实际,不想蹲大排档,又去不起五星级可以去三星的,或者茶餐厅、西餐厅。
在线时间535 小时
阅读权限50
业余侠客, 积分 418, 距离下一级还需 82 积分
业余侠客, 积分 418, 距离下一级还需 82 积分
经验418 点
金钱349 ¥
农民头出身 发表于
听过最贵的15元一只,都是一样的线路,一样的板子来对比的,声音确实比用普通进口的如KOA、光阴等好听。还有 ...
有何好品牌推荐?不同品牌声音差别巨大,我听出来了
在线时间535 小时
阅读权限50
业余侠客, 积分 418, 距离下一级还需 82 积分
业余侠客, 积分 418, 距离下一级还需 82 积分
经验418 点
金钱349 ¥
国产大红袍在我这里最垃圾!又硬又刺!
在线时间9140 小时
阅读权限100
青铜剑侠, 积分 6229, 距离下一级还需 18771 积分
青铜剑侠, 积分 6229, 距离下一级还需 18771 积分
经验6229 点
金钱6137 ¥
王记 发表于
有何好品牌推荐?不同品牌声音差别巨大,我听出来了
我也迷茫,一分钱一分货,又要搭配又要符合自己的审美要求。。。。。
Powered by查看: 5370|回复: 42
弱弱的问一下,这个功放电路的输入阻抗怎么计算啊?
并且,该用多大的电位器呢?
(76 KB, 下载次数: 19)
15:56 上传
一般用100k,小功率输出50k比较合适
引用第0楼aristurtle于 15:56发表的 弱弱的问一下,这个功放电路的输入阻抗怎么计算啊? :
并且,该用多大的电位器呢?
输入阻抗是RR0:100K,电位器晶体管耳放一般用50K(A),加电位器的输入阻抗是RR0和电位器并联的值。
谢谢大家 [s:2]
喂喂喂,楼上这些不懂装懂的什么玩意儿啊.
输入阻抗啊.阻抗啊懂不懂什么叫阻抗啊.
不懂瞎逼逼很光荣么?
引用第4楼德律风根于 22:09发表的 :
喂喂喂,楼上这些不懂装懂的什么玩意儿啊.
输入阻抗啊.阻抗啊懂不懂什么叫阻抗啊.
不懂瞎逼逼很光荣么?很有道理,所以输入阻抗应该是1/2*pi*f*Cdc+RRi+RR0/(1+2*pi*f*RR0*RC0),忽略了JFET的输入阻抗,忽略了元器件的寄生参数。
引用第5楼2b青年爱发烧于 22:33发表的 :
很有道理,所以输入阻抗应该是1/2*pi*f*Cdc+RRi+RR0/(1+2*pi*f*RR0*RC0),忽略了JFET的输入阻抗,忽略了元器件的寄生参数。
看来 中国耳机放大器之先驱 也不一定靠谱啊。请问公式中的Cdc和f分别指什么啊?
直接用pspice算,自己手动算多累啊
pspice静态工作点分析的结果里面就包含了输入阻抗和输出阻抗,静态增益等。
引用第6楼aristurtle于 18:15发表的 :
看来 中国耳机放大器之先驱 也不一定靠谱啊。请问公式中的Cdc和f分别指什么啊?也不能怪人家不靠谱,人家给出的是近似值,不需要很精确的情况下确实是100K。
我上面忘写了容抗部分还有一个j,把f替换成f*j即可。
Cdc指耦合电容容值,看不清你电路图写的到底是Cd0c还是Cd_c,f指信号频率,j指虚数,等效于高中数学的i。
然后阻抗的值一般是指其模值,所以计算起来就是根号下实部平方与虚部平方之和.
听上去很麻烦是吧?所以,不想麻烦的话就听人家的,取100K的近似值。
引用第9楼2b青年爱发烧于 20:49发表的 :
也不能怪人家不靠谱,人家给出的是近似值,不需要很精确的情况下确实是100K。
我上面忘写了容抗部分还有一个j,把f替换成f*j即可。
Cdc指耦合电容容值,看不清你电路图写的到底是Cd0c还是Cd_c,f指信号频率,j指虚数,等效于高中数学的i。
然后阻抗的值一般是指其模值,所以计算起来就是根号下实部平方与虚部平方之和.
.......给的图的JFET似乎什么信息都没有...我找了好久.....
引用第10楼德律风根于 21:00发表的 :
给的图的JFET似乎什么信息都没有...我找了好久.....2SK170啊,很有名的管子,早停产的管子,假货满天飞的管子。
引用第11楼2b青年爱发烧于 21:11发表的 :
2SK170啊,很有名的管子,早停产的管子,假货满天飞的管子。我是说,关于他的小信号模型.....
引用第12楼德律风根于 21:52发表的 :
我是说,关于他的小信号模型.....spice model?么办法,照着datasheet的参数随便编一个吧
引用第13楼2b青年爱发烧于 22:23发表的 :
spice model?么办法,照着datasheet的参数随便编一个吧哦,手算的时候用的那个简化小信号模型.
机器算的话,spice,
反正差不多一个意思.
你们不要这么吹毛求疵好不好啊 [s:2]
耳放嘛,这类低频信号,基本上动态阻抗和静态阻抗相差无几啊,就那个100k并联电位器的部分就差不多了 [s:5]
嗯,还要看电位器怎么连的,电位器变化,阻抗也是在变化的 [s:2]
引用第15楼zhangdu于 13:12发表的 :
你们不要这么吹毛求疵好不好啊 [s:2]
耳放嘛,这类低频信号,基本上动态阻抗和静态阻抗相差无几啊,就那个100k并联电位器的部分就差不多了 [s:5]
嗯,还要看电位器怎么连的,电位器变化,阻抗也是在变化的 [s:2]就是打倒反动权威罢了,
这次清华还是不小心中枪了,
当然,前提是,这哥们儿是真的清华.
要不然,该被打倒.
根什么根号啊!还有限元了!!还模拟了!!!还什么寄生参数……我真是服了。
我在这里趴了好今年,就指望看个帖子能提高一下水平,有么?一个没有!成天看见因为这些破事辩论来辩论去。
并联的100K电阻,看作是直流下阻抗为100K,那个场效应管子的门极也是并联,那直流电阻相当于俩电阻并联好不好!阻抗是什么?阻抗只会随着频率的升高而增加,永远不会出现频率增加而阻抗降到负值得可能有没有!这个电路不是三极管,没有偏置! [s:2]
OK了,2SK170百度一下得知-30伏的输入功耗是-1na,我们把它看成正的,那R=U/I=30伏/0.安=欧姆,并联后那就是……反正是算不过来了……
说白了,就是俩巨大的电阻并联了,并联后直流电阻也是巨大的,这个时候你不必考虑什么输入阻抗了,只要前端能带动100k欧电阻,就能带动这个电路,就是好多人费了牛劲算出来的……算100k欧吧。
但是不行哦!电阻太大了会窜入噪音的!那怎么办?那要问你的前端设备,结论是拿掉那个100K电阻,电位器的阻值要尽可能低到你前端设备输出阻抗的极限才好。
打完收工,累得慌。
JEFT的输入阻抗是兆欧级的,跟100K电阻并联可以忽略不计,所以输入电阻为RRi+RRo,近似100K。喜欢把简单问题整复杂的人会说还有个RCo低通电容会影响输入阻抗,但它是以1KHz计的,可以无视。 [s:2]
引用第17楼hyperma于 15:07发表的 :
根什么根号啊!还有限元了!!还模拟了!!!还什么寄生参数……我真是服了。
我在这里趴了好今年,就指望看个帖子能提高一下水平,有么?一个没有!成天看见因为这些破事辩论来辩论去。
并联的100K电阻,看作是直流下阻抗为100K,那个场效应管子的门极也是并联,那直流电阻相当于俩电阻并联好不好!阻抗是什么?阻抗只会随着频率的升高而增加,永远不会出现频率增加而阻抗降到负值得可能有没有!这个电路不是三极管,没有偏置! [s:2]
.......哈哈哈,一针见血呀!有些人书读多了会变傻。
) 粤公网安备 98号
Powered by当前位置 |
专业音响师必知的功放参数全面解析
[提要]专业音响师必知的功放参数全面解析
音响网 &上的英文解释
一张图搞清功放分类
功放的性能指标
输出功率(output power):
表明该功率放大器在一定负载下输出功率的大小,一般在功放说明书上标明在8欧姆负载,4欧姆负载或2欧姆负载状态下的输出功率,同时也会表明功放在桥接状态下,8欧姆负载时或4欧姆负载时的输出功率。这个输出功率表示功放的额定输出功率,而不是最大或者峰值输出功率。
负载阻抗(load impedance):
表明功放的负载能力,负载的阻抗越小,表明功放能通过的电流能力就越强,一般来说,大部分的功放最低负载阻抗为4欧姆,品质好的功放最低负载一般为2欧姆。双通道时能够负载4欧姆的功放,在桥接状态下可以负载最低为8欧姆,双通道时能够负载2欧姆的功放,桥接状态下可以负载4欧姆。桥接状态下只能负载8欧姆的功放,不可以负载更低的阻抗,否则会造成功放因为电流过大而烧毁。
立体声(两路)模式(stereo mode or dual mode):
一般的功放内部具有两个独立的放大电路,可以分别接受两路不同的信号分别进行放大并输出,这种工作状态称为立体声(两路)模式。
桥接模式(bridge mode):
桥接模式是利用功放内部的两个放大电路相互推挽,从而产生更大输出电压的方式,功放设定为桥接模式后,成为一台单声道放大器,只可以接受一路输入信号进行放大,输出端为两路功放输出的正端之间。
并联输入模式(parallel mode):
此方式将功放的两路输入信号通道进行并联,只输入一路信号来同时驱动两个放大电路,两个输出端输出信号相同。
频响范围(frequency range):
表明功放可以进行放大的工作频段,一般为20-20000赫兹,一般在此数据后面有一个后缀,比如-1/+1dB,这代表这个频率范围的误差或浮动范围,这个数值约小,表明频率范围内的频响曲线更平直。如果功放的频响范围以-3分贝为测试条件,这个功放出来的声音可能就没有那么平直了。
总谐波失真(THD):
表明功放工作时,由于电路不可避免的振荡或其他谐振产生的二次,三次谐波与实际输入信号叠加,在输出端输出的信号就不单纯是与输入信号完全相同的成分,而是包括了谐波成分的信号,这些多余出来的谐波成分与实际输入信号的对比,用百分比来表示就称为总谐波失真。一般来说,总谐波失真在1000赫兹附近最小,所以大部分功放表明总谐波失真是用1000赫兹信号做测试,但有些更严格的厂家也提供20-20000赫兹范围内的总谐波失真数据。总谐波失真在1%以下,一般耳朵分辨不出来,超过10%就可以明显听出失真的成分。这个总谐波失真的数值越小,音色就更加纯净。一般产品的总谐波失真都小于1%@1kHz,但这个数值越小,表明产品的品质越高。
互调失真(IMD):
互调失真是由于功放内部的晶体管工作特性引起的,使正弦波的波形发生畸变而产生的。互调失真的存在,直接影响到声音的音质,电子管放大器没有互调失真,所以一般来说晶体管放大器听起来感觉没有电子管功放那么柔和,舒服。一般互调失真的数值如果大于0.1%,这个功放的声音就感觉生硬,发涩,不抒展。
共模抑制比(CMRR):
共模抑制是用来衡量共模信号被放大器抑制程度的一个综合指标,详细的定义不赘述了,这个参数一般用负值表示,比如-60dB,这个指标也是严重影响放大器的音质的指标,此指标数字越低,功放的音质就越好。
阻尼系数(damping factor):
这是功放内阻和负载阻抗的比值,阻尼系数=音箱的阻抗÷(功放的内阻+音箱线的阻抗),高阻尼系数的功放对音箱单元的控制能力加强,可以让单元的反应更加接近功放输出信号的要求,但过高的阻尼系数将导致音箱的低频延展性变差,声音干硬。比较低的阻尼系数可以获得柔和的低音,但过低的阻尼系数将造成低音变得拖沓,不干净。一般的功放阻尼系数在200-1000欧姆之间。音箱线质量不好,线电阻大同样会影响功放的阻尼系数,造成功放对音箱的控制力减弱,声音变散。
输入灵敏度(input sensitivity):
这是个电压概念,表明当功放达到满功率输出时,在输入端的信号电压的大小,一般的功放的输入灵敏度电压为0.775v(0dB)到1.5v(+6dB)之间,灵敏度电压越高,输入灵敏度越低。有些高品质功放,输入灵敏度低是由于采用更深的负反馈电路,所以具有更低的失真,更宽的频响和更好的音质。
信噪比(S/N or SNR or Hum and Noise):
指功放信号电压和本底噪声电压的比值,这个数值越大,表明功放的噪声更低。一般专业产品的信噪比都在100分贝左右,用正值标注时,越高越好(有些功放采用负值标注,数值越小越好)。衰减功放的输入电平增益(关小功放音量旋钮)会降低功放的信噪比。
通道串扰(crosstalk):
意味着功放内部两个放大通道之间通过电路耦合产生的串音,此指标不好,一个声道的信号就会串到另外一个声道去,从而在另外一个通道产生不干净的声音,通道串扰的数值一般为-60分贝左右。这个数值用负值标注时,数值越低,表示两个放大通道之间的分离度越高,声音越干净。
转换速率(Slew Rate):
衡量放大器的响应速度一般是用电压转换速率其定义是在1微秒时间里电压升高幅度,如果以方波测量的话则是电压由波谷升至波峰所需时间,单位是V/u s,数值愈大表示瞬态响应度越好,感觉声音的速度快,能量集中。专业功放的转换速率一般都可以做到40V/u s以上。转换速率低于20V/u s的功放出来的声音会感觉拖沓和发散。
高通滤波器(high pass filter or HPF):
音响系统中,有时会有一些极低频的次声波(infrasonic)信号夹杂在全音频信号当中,这些次声波信号人耳听不见,但是这种信号进入音箱,就会导致低音喇叭产生自激,并导致喇叭损坏,所有,有些功放内部装有次声波消除滤波器,有些是在后面板设置开关,可以在需要的时候切除无必要的30赫兹或40赫兹以下的频率,保护喇叭的安全。
限幅器(limiter):
这是功放的保护措施之一,在功放输入电压超过输入灵敏度电压时,对输入信号进行限幅,从而避免功放因为过高的输入电压产生削波失真。有些功放的限幅器是自动启动的,有些功放在后面板安装了限幅器启动开关来控制限幅器的启动状态。
接地开关(ground left):
功放的机箱一般与电源变压器屏蔽相连,功放机箱也具有接地端,但这个“地”与信号的“地”不同。当电源的接地端存在干扰时,打开接地开关让功放机箱的接地与之相接可以降低交流声干扰,如果电源地线没有干扰就不要接通。
参数具体分析
放大器的的规格是衡量其性能的一个重要指标,当然另一个重要指标是以耳朵收货。由于大部份厂商对其产品一般都只是给出少数参数应付了事,故此笔者借此机作番介绍。
在众多技术指标中,频率响应是最为人们所熟悉的一种规格。一部分放大器而言,理论上只需要做到20至2万周频率响应平直就已足够,但是真正的乐音中含有的泛音(谐波)是有可能超越这个范围的,加上为了改善瞬态反应的表现,所以对放大器要求有更高的频应范围,例如从10Hz~100kHz等。
习惯上对频率响应范围的规定是:当输出电平在某个低频点下降了3分贝,则该点为下限步率,同样在某个高频点处下降了3分贝,则定为上限频率。这个数分贝点有另外一个名称,叫做半功率点(HalfPowerPoint)。因为当功率下降了一半时,电平恰好下降了解情况分贝。有一点必须指出的是半功率点对某些电子设备及自动控制系统虽有一定的意义,但对音响器材就未必合适,因为人耳对声音的解析度可达到0.1分贝。所以有一些高级器材标称20至20K达到正负0.1分贝,这实际上经起标称10至50K+3DB规格有可能更高。顺带一提的是,频应曲线图实际上是有两幅的,在控制工程中“波特图”(BodePlot)。其中的幅频曲线图就是我们常见的频率响应图,另一幅叫做相频曲线图,是用来表示不同频率在经过了放大器后所产生的相位失真(相位畸变)程度的。相位失真是指讯号由放大器输入端至输出端所产生的时间差(相位差)。这个时间差自然是越小越好,否则会影响负回输线路的工作。除此之外相位失真也和瞬态响应有关,尢其是和近年来日益受到重视的瞬态到调失真有着密的关系。对于HiFi放大器而言,相位失真起码要在20~20KHz+-5%范围之内。
任何一个自然物理系统在受到外界的扰动后大都会出现一个呈衰减的周期性振动。举例来说,一根半米长两端因定的弦线在中间受到弹拨的话,会产生一个1米波长的振动波,称为基波(Fundemental),弦线除了沿中心点作大幅度摆动外,线的本身也人作出许多肉眼很难察觉的细小振动,其频率一般都是比基波高,而且不止一个频率。其大小种类由弦线的物理特性决定。在物理学上这些振动波被称为谐波(Harmonics)。为了方便区别,由乐器所产生的谐和波常被为泛音(Overtone)。谐波除了由讯号源产生外,在振动波传播的时候如果遇上障碍物而产生反射,绕射和折射时同样是会产生谐波的。
无论是基波或谐波本身都是“纯正”的正弦波(注:正弦波是周期性函数,由正半周和负半周组成,但决不能将其负半周称为负弦波!)但它们合成在一起时却会产生出许多厅形怪状的波形。大家所熟悉的方波就是由一个正弦波基波加上大量的厅次(单数)谐波所组成,这也解释了为什么方波常常被用作测试讯号的原因。
放大器的线路充满着各种各样电子零件,接线和焊点,这些东西可多或少都会降低放大器的线性表现,当音乐讯号通过放大器时,非线性特性会使音乐讯号产生一定程度的扭曲变形,根据前述理论这相当于在讯号中加入了一些谐波,所以这种讯号变形的失真被为谐波失真。这就不难明白为什么谐波失真常用百分比来表示。百分比小即表示放大器所产生的谐波少,也就是说讯号波形被扭曲的程度低。由不同的物理系统所产生的谐波其成份也不相同。但都有一个共通点,那就是谐波的频率越高,其幅度越小。所以对音频放大器而言,使声音出现明显可闻失真的是频率最接近基波的二至三个谐波失真分量。
厂商在标定产品的谐波失真时,通常只给出一项数据,例如0.1%等。可是由放大器所产生的谐波却并不是一项常数,而是一项与信号频率和输出功率有关的函数。
谐波失真并非完全一无是处,胆机的声音之所以柔美动听,原因之一是胆机主要产生偶次谐波失真。即频率是基波频率2‘4’6‘8’…倍的谐波。因为谐波电平和频率成反比,所以2次谐波幅度大,影响也大,其余的由于幅度小,所以影响也大,其余的由于幅度小,所以影响轻微,虽然二次谐波技术上讲是失真,但由于其频率是基波的一倍,刚好是一个倍频程,也就是说右以和基波组成音乐上的纯八度。我们知道纯八度是最和谐,动听的和声。所以胆机声音甜美,音乐感丰富也就不难理解。在40年代时,有许多较“小型”的收音机故意加入相当程度的二次谐波失真。目的是制造“重低音”去取悦消费者。声音右能会很过瘾,但是和高保真的要求却是完全背道而驰。
讯号噪声比
简称讯噪比或信噪比,是指有用讯号功率与无用的噪声功率之比。通常贝计量,因为功率是电流和电压的函数,所以讯噪比也可以用电压值来计算,即讯号电平与噪声电平之比值,只是计算公式稍有不同。以功北率计算讯噪比:S/N=10log以电压计算讯噪比:S/N=10log由于讯噪比和功率或者是电压成对数关系,要提高讯噪比的话便要大幅度地提高输出值和噪声值之比,举例来说,当讯噪比为100dB时,输出电压是噪声电压的一万倍,以电子线路来说,这并不是一件容易的事。
一台放大器如有高的讯噪比意味着背景宁静,由于噪声电平低,很多被噪声掩盖着的弱音细节会显现出来,使浮音增加,空气感加强,动态范围增大。衡量放大器的讯噪比是好或者是坏没有严格的判别数据,一般来说以大约85dB以上为佳,低于此值则有可能在某些大音量聆听情况下,在音乐间隙中听到明显的噪音。除了讯噪比外,衡量放大器噪音大小也可以用噪声电平这个概念,这实际上也是一个用电压来计算的讯噪比数值,只不过分母是一个固定的数:0.775V,而分子则是噪声电压,所以噪声电平和讯噪比的分别是:前者一个绝对值,后者则一个相对数。
在许多产品说明书中的规格表数据后面,常常会有一个A字,意思是A-weight,即A计权,计权的意思是指将某个数值按一定规则权衡轻重地修改过,由于人耳对中频特别敏感,所以如果一台放大器的中频段讯噪比足够大的话,那么即使讯噪声比在低频和高频段稍低,人耳也不易察觉。可见如果采用了计权方式测量讯噪比的话,其数值一定会比不采用计权方式为高。以A计权来说,其数值会较不计权高约会分贝。
指由于讯号互相调制所引起的失真,调制一词本来是指一种在通讯技术中,用以提高讯号传送效率的技术。由于含有声音、图像,文字等的原始讯号“加进”高频讯号里面,然后同志将这个合成讯号发送出去。这种将高低频相“加”的过程和方式称为调制技术,所合成的讯号称为调制讯号。调制讯号除保留高频讯号的主要特征外,还包含有低频讯号的所有信息。产生互调失真的过程实质上也是一种调制过程,由于一个电子线路或一台放大器不可能做到完全理想的线性度,当不同频率的讯号同时进入放大器被放大时,在非线性作用下,每个不同频率的讯号就会自动相加和相减,产生出两个在原讯号中没有的额外讯号,原讯号如有三个不同频率,额外讯号便会有6个,当原讯号为N个时,输出讯号便会有N(N-1)个。
可以想像的是,当输入讯号是复杂的多频率讯号,例如管弦乐时,由互调失真所产生的额外讯号数量是多么的惊人! 由于互调失真讯号全部都是音乐频率的和兴差讯号,和自然声音完全同,所以人耳对此是相敏感的,不幸的是,在许多放大器中,互调失真往往大于谐波失真,部份原因是因为谐波失真一般比较容易对付。
虽然互调失真和谐波失真同样是由放大器的非线性引起,两者在数学观点上看同样是在正浞导号中加入一些额外的频率成份,但它们实际上是不尽相同的,简单的说,谐波失真是对原讯号波形的扭曲,即使是单一频率讯号通过放大线路也会产生这种现象,而互调失真却是不同频率之间的互相干扰和影响,测量互调失真远比测量谐波失真复杂,而且至今尚未有统一的标准。
瞬态互调失真
也称TIM失真。由于瞬态互调失真与负回输密切相关,所以在讨论瞬态互调失真时就需要先从负回输说起。负回输(NegativeFeedback)是一种广泛应用于各类工程技术领域,简音而实用的控制技术,负回输本来是属于控制技术中的闭环控制(CloseLoopControl)系统的一个环节,但因为应用广泛,所以常常被用作闭环控制的代名词。负回输实际上是一种普遍存在于人们日常生活中的自然规律,举例来说,当我们驾驶汽车的时候,如果发现汽车偏离得驶路线,我们就会向相反方向扭动方向盘,使汽车驶回正确路线。在这里我们的眼睛就是充当负回输通道的作用,负责把输出值(汽车得驶方向)回馈给挖掘器(大脑),然后控制器将输出值和设定值(正确方向)互相比较(相减),然后根据比较后的误差,发出修正讯号(扭方向盘)去纠正由此可见,负回输的作用是将输出值倒相(变为负数),随后将之回馈至输入端,和设定值相减,得出误差讯号,然后控制器就会根据误差大小作出修正。
在电子放大线路中,由于零件的对称,温度的变化,噪音的干扰以及其他种种原因,使读号的被放大的同时,无可避免地被加入各种各样的失真,而负回输则能有效地降低这些失真。举一个简单的例子来说,如放大器在放大一个正弦波讯号时,加入了一个失真的方波讯号,这个正弦加方波的讯号会被负回输线路反相,然后加馈至输入端,和原来的正弦波相减,使原来的讯号幅度变小之除还含有一个相反的方波,这个新的讯号在经过放大器时同样会被再次加入一个失真的方波讯号,由于讯号里面已有一个相反的方波,这样正反方波便会互相抵消,使输出讯号只含有正弦波,这就明显地降低了失真。不过负回输的缺点也是很明显的,因为负回输令输入讯号和回馈的输出讯号相减,降低了讯号电平,如果要使输出讯号相沽,降低了讯号电平,如果要使输出讯号被放大到足够的强度,放大器的放大率(增益)便要加大,所幸的是这并非难事,尤其是晶体管机。如果我们将负回输量加大,使输出讯号降低到和输入讯号电平相同的程度,即完全没有放大,这种放大器线路有一个特殊的名称,叫缓冲放大器(BufferAmplifier)。虽然讯号没有被放大,但因为放大器一般都是输入阻抗高,输出阻抗低。所以缓冲放大器常被用作阻抗匹配之用。
既然负回输能有效地降低失真,但为什么又会引起瞬态互调失真呢?原来问题出在时间上,其中又以晶体管机最为严重。和真空管相比,晶体管有坚因耐用,体积小,重量轻放大率高等优点,其缺点是工作特性不稳定,易受温度等因素影响而产生失真甚至失控。解决办法之一是采用高达50至60dB左右的深度负回输。反正晶体管的放大率很高,牺牲一些无所谓,由于采用了大深度的负回输,大幅度减少了失真,所以晶体管机很容易获得高超的技术规格。不过麻烦也就因此而起,为了减少由深度负回佃所引起的高频寄生振荡,晶体管放大器一般要在前置推动级晶体管的基极和集电极之间加入一个小电容,使高频段的相位稍为滞后,称为滞后价或称分补价,可是无论电容如何细小,总需要一定时间来充电,当输入讯号含有速度很高的瞬态脉冲时,小电容来不及充电,也就是说在这一刹那线路是处于没有负回输状态。由于输入讯号没有和负回输讯号相减,造成讯号过强,这些过强讯号会讼放大线路瞬时过载(Overload)。因为晶体管机负回输量大,讯号过强程度更高,常常达到数十倍甚至数百倍,结果使输出讯号削波(Clipping)。这就是瞬态互调失真,因为在晶体管线路最多出现,所以也被称为“原子粒”声。
顺带一提的是,这种负回输时间延迟问题在工业控制系统中也常常遇到,称为纯延迟(DeadTime)问题,其起因绝大部份是因为感应器(Sensor)安装位置太远。例如在一个恒温热水器中,瘟度探测被安装在远离发热顺的位置,结果是当探测器感应到水温足够时,在发热器附近的水温早就已经过热了。这样的控制结果必然是水温在过热和过冷之间大幅摆动,称为控制超调(Overshoot)或系统振荡。纯延迟至今仍然是困扰自动控制技术的一大难题,有关解决方法的论文由五十年代至今少说也有上千篇,但始终找不到一个简单而行之有效的办法。
虽然负回输出现时间延迟不好对付,但要解决也不是没有办法,我们可以干脆让它出现,或即使其出现也不至于造成太大的破坏,方法有多种,例如只用小量大环路负回输,这样即命名出现负回输时间延迟,输入讯号也不至于过强。所减少的负回输量则由只跨越1个放大级的局部负回输代替,局部负回输路径短,时间快,不易诱发瞬态互调失真。真空管工作稳定,不一定要用大深度负回输抑制失真,况且其失真多数是人耳爱听的偶次谐波失真所以胆机没有一般所谓的“原子粒”声。至于其他用于线路设计上防范瞬态互调失真的方法,因涉及较多枯燥的理论,这里就不一一介绍了。
除了在线路设计上防范瞬态互调失真外,大家还可以采取另一项措施去减少瞬态互调失真,那就是尽量利用各种屏蔽和滤波措施去减少各种高频干扰讯号进入放大器,虽然这些讯号有许多是属于人耳听不见的射频干扰,但因为其频率很高,极易诱发瞬态互调失真,令输入级过载,使音乐讯号得不到正常的放大。
瞬态互调失真除了由放大器大环路负回输的时间延迟引发外,放大器速度不够快也是一个重要的原因,如果放大器的速度够快的话即使在同样负回输条件下,瞬态互调失真度也可以降低。放大器的速度是一个通俗的形容,正确的说法应该是指放大器的瞬态响应能力(TransientResponse)。在控制理论中,瞬态响应和频率响应是衡量系统性能的两大方法。它们的优点是不需经详细了解整个系统的详细数学模型,只需要根据系统对特定输入讯号的响应曲线就可估算出系统对特定输入讯号的响应曲线便可估算出系统的特性,从而作出补偿或改善。但相反来说,如果我们知道某个系统的数学模型,也可以不经测试就估算出该系统的响应模式。
对于精确度要求不高的系统,我们可以选择性地采取瞬态响应法或频率响应法去评估系统性能,而对于要求高的系统,两者都必须加以考虑。作瞬态应测试时常用的讯号是单位阶跃函数(StepSignal)和单位脉冲函数(Impulse)。为方便起见,放大器测试多用前者的特殊形式:方波。一个较为理想的方波含有一个速度极高的电压上升沿和降沿,用来测试放大器的瞬态响是非常合适的。
衡量放大器的响应速度一般是用电压转换速率(SlewRate)。其定义是在1微秒时间里电压升高幅度,如果以方波测量的话则是电压由波谷升至波峰所需时间,单位是V/us,数值愈大表示瞬态响应度越好,高性能放大器的转换速率一般都可以做到25V/us以上。提高瞬态响应度最简单接的办法是选用高频特性好的零件。也可以用适当的环路负回输来改善,这似乎是一个自相矛盾的做法,但事实不然,瞬态互调失真只是当讯号速度超过放大器的瞬态响应能力范围之外才会发生。
除了瞬态互调失真外,过快的讯号也会产生另一种失真现象,叫做铃振(Ringing),两者的本质相同。当输入讯号速度快而幅度小时,首先出现的是铃振现象,只有当这个讯号的速度快至某个程度时才会出现瞬态互调失真,然而当讯号速度快兼幅度大时,铃振没有发生便已进入瞬态互调失真状态。最容易引发铃振现象的讯号就是各种各样的速度快但幅度小的高频干扰噪音,这就是为什么音响设备要有完善的抗干扰措施的原因之一。
界面互调失真
界面互调失真算是一个较新和较少人提及的放大器规格。和下面将要提及的阻尼系数一样,除了和放大器线路有关外,和扬声器也有很大关系。所以在介绍这两项规格前,先简单地说一说扬声器有关这方面的特性。
目前的音响扬器绝大部分都是采用电动式原理的动圈式喇叭,其结构包括一个用作产生磁场的永久磁铁及一人音圈。从构造上来说动圈式扬声器属于一种特殊形式的直流马达,因为音圈只需要来回运动而不是旋转,所以不需使用直流马达上常见的炭刷和换向器(俗称“铜头”)。
无论是交流马达或是直流马达,都是具有可逆性的,即在某种条件下可当作发电机来使用。直流马达在结构上和直流发电机没有差别,尤其是永久磁钱式直流马达,只要能够使它的转轴转动,就可在其接线端上产生出一定的电压。对动圈式扬声器来说,只要我们用手按压振膜,就一定会在接线端上产生电压,大小则视乎按压的速度和幅度而定。
由于损耗和非线性化的影响,扬声器不可能对由放大器输出的全部电能加以利用而会有剩余电能产生,另外由于振膜的机械惯性原因,在音圈中也会产生多余电能。由前者所产生的问题稳为界面互调失真,而后者则会使扬声器的低频控制力变差。
界面互调失真和扬声器内阻及负回输线路有关。当放大器输出的电能无法全部转变为机械能量时,多余的电能就必定会在扬声器线圈中产生出额外的反电势(Backemf),这个反电势会由喇叭线回馈至放大器的输出端,然后依放大器内阻的大小形成一个电压,这个电压会被负回输线路反馈至输入端,和输入讯号打成一片。使中低频声音混浊,分析力和层次感大减。
要降低界面互调失真,关键之处是要降低负回输量和放大器内阻(即提高阻尼系数)。有许多Hi-End晶体管放大器正是采用这种原则进行设计的。除此以外,双线接驳也是另类改善途径,因为分开的高低音线路使低频端的反电势不会对高频讯号产生影响,从而改善音质。
阻系数是表示对某一个过程中进行变化的物理量加以抑制的程度。以扬声器来说,要抑制的是扬声器振膜在没有电讯号输入的情况下所作的惯性振动,简单地说这是一个制动动作。扬声器的振膜是不能用机械阻尼方式来制动的,所能使用的只是电磁方式的阻尼。而这种方式要求系统必须尽量处于发电机状态。
前面的讨论曾提及扬声器会很容易进入发电机状态,当输入电读号消失后的一瞬间,扬声器振膜在惯性作用不还在振动。这种振动会在音圈中产生出一个感应电压,这时如果放大器输出阻讥低的话,就相当于在扬声器端子上并接一个很小的电阻,音圈上的感应电压就会驱使一个较大数值的电流流经放大器的内阻邮局就是说扬声器此刻变成电源,而放大器的功率输出级线路却变成负载。根据电磁感应定律,这个电流是音圈在永久磁铁的磁场中振动所产生的,所以这个音圈电流就必定会产生一个和振动方向相反的力去抵消振动。放大器的内阻越小,电流就越大,抵消惯性振动的作用也就越强。由于这个电流的能量是会在电阻上变成热量消耗掉,所以这种制动方式在电机控制技术中称为“能耗制动”(DynamicBracking)。扬声器在重播低频时的振幅最大,所造成的惯性振动也最严重,不加以抑制的话会使低频控制力变差,缺乏力度、弹性和层次感,但过份抑制则会使声音变干。
胆机因为有输出火车的线圈电阻存在,阻尼系数大极有限,相反地,晶体管机采用多管并联系等方法可轻易将阻尼系数提升至一百几十,甚至达到数百。不过可异一个阻巴系数的要求,这也就造成了不同的扬声器和放大器之间会有各种不同音色的配搭。
对采用了大一半路负回输的放大器来说,阻尼系数并不是唯一会对扬声器进行刹车的工具,因为扬声器的惯性振动电流流经放大器的输出内阻时,将会产生某个数值的电压,负回输线路即时将之反馈至输入端,令放大线路以为出现了一个不该出现的失真电压,马上产生一个反相的讯号加以抵制。这可是一种最强力的马达电制动方式,称为“反接制动”(Plugging)。不过也是一种最少使用的方式,因为令一台马达突然反转会产生巨大的机械冲击力而损坏机器,但扬声器本来就是设计成不断前后运动的装置,所以这种方法理论上完全没有问题,然而实际上却常常出问题,麻烦又是来自负回输。
扬声器不是麦克风,由振膜振动产生的电压,不会像麦克风寻样准确,所以放大器生的抵消电压也不可能做到完全和振动大小相等,方向相反。结果是使抑制过程出现不稳定,低频不是圆滑而迅速地减少,这个过程其实和界面互调失真的过程非常相似。某些原子粒放大器的低频控制力还不如胆机,原因也就在于此。
衡量放大器性能还有一些其他的规格,这篇文章所提及的只是些大家关注,加上经常出现争议的规格,希望一些非工程人士的发烧友能有更清晰的概念。
&编辑:Eric
免责声明:凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
请后再发言}

我要回帖

更多关于 功放输出阻抗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信