排列组合计算的几个问题

查看: 2838|回复: 7
数算问题各类型小总结--2 排列组合问题II
签到天数: 176 天连续签到: 1 天[LV.7]同甘共苦
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
才可以下载或查看,没有帐号?
排列组合问题II
一、相临问题--整体捆绑法
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?
解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。
捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。
练习:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?
分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.
解&&因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有A66种排法,其中女生内部也有A33种排法,根据乘法原理,共有A33*A66种不同的排法.
二、不相临问题--选空插入法
例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?
解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:&&种 .
插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可.若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。
练习: 学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?
分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.
解 先排学生共有 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有 种选法.根据乘法原理,共有的不同坐法为&&种.
三、复杂问题--总体排除法或排异法
有些问题直接法考虑比较难比较复杂,或分类不清或多种时,而它的反面往往比较简捷,可考虑用“排除法”,先求出它的反面,再从整体中排除.解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有  个.
解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 -3=32个.
练习: 我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?
分析 此题若是直接去考虑的话,就要将问题分成好几种情况,这样解题的话,容易造成各种情况遗漏或者重复的情况.而如果从此问题相反的方面去考虑的话,不但容易理解,而且在计算中也是非常的简便.这样就可以简化计算过程.
解 43人中任抽5人的方法有&&种,正副班长,团支部书记都不在内的抽法有&&种,所以正副班长,团支部书记至少有1人在内的抽法有& & 种.
四、特殊元素--优先考虑法 
 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
&&例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法   种.
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有 种,而其余学生的排法有 种,所以共有&&=72种不同的排法.
例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有   种.
解:由于第一、三、五位置特殊,只能安排主力队员,有 种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有&&=252种.
五、多元问题--分类讨论法
对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )
&&A.42&&B.30&&C.20&&D.12
解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。
例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有& && &种.(以数字作答)
解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色. 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法????,从而共有24+48=72种方法,应填72.
六、混合问题--先选后排法
&&对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.
&&例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有(&&)
&&A. 种&&B. 种&&C. 种&&D. 种
解:本试题属于均分组问题。则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。
例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()&&A.24种& && &B.18种& && &C.12种& && && & D.6种&&
解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有: A31A22,故不同的种植方法共有A31C32A22=12,故应选C.
七.相同元素分配--档板分隔法
例10.?把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。
解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。
八.转化法:
对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想,将其化归为简单的、具体的问题来求解.
例11 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?
分析 此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.
解: 此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有&&种不同的放法,所以名额分配方案有&&种.
九.剩余法:
在组合问题中,有多少取法,就有多少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.
例12 袋中有5分硬币23个,1角硬币10个,如果从袋中取出2元钱,有多少种取法?
分析 此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.
解&&把所有的硬币全部取出来,将得到0.05×23+0.10×10=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有&&种取法.
十.对等法:
在有些题目中,它的限制条件的肯定与否定是对等的,各占全体的二分之一.在求解中只要求出全体,就可以得到所求.
例13&&期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?
分析 对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了.并且也避免了问题的复杂性.
解 不加任何限制条件,整个排法有& & 种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的, 所以语文安排在数学之前考的排法共有& & 种.
十.平均分组问题:
例14.6本不同的书,按下列要求各有多少种不同的选法:
(1)分给甲、乙、丙三人,每人2本;
(2)分为三份,每份2本;
(3)分为三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;
(5)分给甲、乙、丙三人,每人至少1本。
解:(1)根据分步计数原理得到: 种;
(2)分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法.根据分步计数原理可得: ,所以 .
因此,分为三份,每份两本一共有15种方法。
(3)这是“不均匀分组”问题,一共有 种方法.
(4)在(3)的基础上再进行全排列,所以一共有 种方法.
(5)可以分为三类情况:①“2、2、2型”即(1)中的分配情况,有 种方法;
②“1、2、3型”即(4)中的分配情况,有 种方法;③“1、1、4型”,有 种方法,
所以,一共有90+360+90=540种方法.
总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。
具体说,解排列组合的应用题,通常有以下途径:
(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。
(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。
(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。
亲,我看好你哦~~
签到天数: 14 天连续签到: 1 天[LV.3]经常来访
嗯 写的很不错啊
签到天数: 266 天连续签到: 1 天[LV.8]如胶似漆
受益匪浅,O(∩_∩)O谢谢
签到天数: 67 天连续签到: 1 天[LV.6]柔情蜜意
签到天数: 5 天连续签到: 1 天[LV.2]偶尔看看
不错,正在找呢,看看对自己是否有用!
签到天数: 7 天连续签到: 1 天[LV.3]经常来访
不错,不错,不错,真的很不错,真的真的很不错,好好学习啦
签到天数: 11 天连续签到: 1 天[LV.3]经常来访
这个楼主很有才啊
签到天数: 44 天连续签到: 12 天[LV.5]日久生情
学习了,谢谢
Powered by一个简单的概率和排列组合的问题,想了我大半天.1BBBBPPBP,PPBPPBBB,PBBBBPPB,BPPBBBBB,BBBBPBPP,PBPPPBBP,PBBPBPPP,BPPPPPBP,PPBPPBBP,PBBPBBBB,BBBBPBPB,PBPBPPPB,PPPBBPBB,BPBBBBBB,BBBBPPPB,2PBPBBPBB,BPBBBBBP,BBBPPPPP,PPPPBPPB,BPPBPPPP,PPPPPPBB,PPBBBBBB,BBBBPBPP,PBPPBB_百度作业帮
一个简单的概率和排列组合的问题,想了我大半天.1BBBBPPBP,PPBPPBBB,PBBBBPPB,BPPBBBBB,BBBBPBPP,PBPPPBBP,PBBPBPPP,BPPPPPBP,PPBPPBBP,PBBPBBBB,BBBBPBPB,PBPBPPPB,PPPBBPBB,BPBBBBBB,BBBBPPPB,2PBPBBPBB,BPBBBBBP,BBBPPPPP,PPPPBPPB,BPPBPPPP,PPPPPPBB,PPBBBBBB,BBBBPBPP,PBPPBBBB,BBBBBBPB,BBPBBBPB,BBPBPBBP,PBBPBBBP,BBBPBPBP,BPBPPPBB,3BPBBBBPB,BBPBBPBB,BPBBBBPP,BBPPPPBB,PPBBPPBB,PPBBPBBP,PBBPPPPB,PPPBBPPB,BPPBPPBP,PPBPPBBB,PBBBBPBP,BPBPBBPB,BBPBBBBB,BBBBBPBP,BPBPBPBP,如上图,假设每8个字母排列组合为一个图形,每次都随机从256个排列组合中抽一个出来,每一局抽15个图形,允许出现重复,每局出现两个图形一样的概率是多少?或者说每局出现两个图形一样的周期是多少?怎么算?你数学应该很好,所以我想给你一个有趣的题目,这是一个用周期换空间的问题,或者帮我一下忙,我算的是奥们败家勒的概率,bank=桩 player=闲,一局牌,开56-66小局,不是桩就是闲,上面就是他们的bp排列,现在主要算他周期,我取56小局把他拆成7个图形,每个图形8手结果,实际上庄家每局牌就是拿7个图形(不是题目的15个图形)出来分别给我们下住,如果你吓住的选择和图形排列一样,那么你1-2-4-8-16-32-64-128,8注全死,但如果我等最后一个图形出来了,也就是第七个,如果这个图形的前3个字母排列或4个排列和前面6个的任意一个前三或前四个一样,我就用这个注玛缆从第3或第4个反打这个图,长此以往这会否出现永久正盈利,我就是想用周期,也就是时间,换取缆断的空间,到我打到断缆,亏了15码或32码,我也是正盈利的,因为我在他图形未重复前,已经赚够了32码,现在就是算不清这个周期,能否让我赚32码,你能否算算?
只做这个问“每一局抽15个图形,允许出现重复,每局出现两个图形一样的概率是多少”后面的不是很清楚你在讲什么,就当是同一个问题吧.“每局出现两个图形一样的概率”不知道你是指至少两个还是只有两个一样,分开讨论.每一局中,如果是只出现2个一样的,其它的均不一样的话,P=C(15,2)*(1/256)*(1-1/256)(1-2/256)...(1-13/256)如果是至少出现两个一样的,那就用1减去没有一个重复的就行,P=1-(1-1/256)(1-2/256)...(1-14/256) 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
排列组合问题答题策略
下载积分:600
内容提示:
文档格式:DOC|
浏览次数:0|
上传日期: 08:26:23|
文档星级:
该用户还上传了这些文档
排列组合问题答题策略.DOC
官方公共微信找几个好点的排列组合题,最好有解析._百度作业帮
找几个好点的排列组合题,最好有解析.
例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个. 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题. 设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定, 又∵ 2b是偶数,∴ a,c同奇或同偶,即:从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180. 例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图.若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法? 分析:对实际背景的分析可以逐层深入 (一)从M到N必须向上走三步,向右走五步,共走八步. (二)每一步是向上还是向右,决定了不同的走法. (三)事实上,当把向上的步骤决定后,剩下的步骤只能向右. 从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数, ∴ 本题答案为:=56. 2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合 例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种. 分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法. 第一类:A在第一垄,B有3种选择; 第二类:A在第二垄,B有2种选择; 第三类:A在第三垄,B有一种选择, 同理A、B位置互换 ,共12种. 例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________. (A)240 (B)180 (C)120 (D)60 分析:显然本题应分步解决. (一)从6双中选出一双同色的手套,有6种方法; (二)从剩下的十只手套中任选一只,有10种方法. (三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法; (四)由于选取与顺序无关,因而(二)(三)中的选法重复一次,因而共240种. 例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______. 分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种. 例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工.现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法? 分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一. 以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准. 第一类:这两个人都去当钳工,有种; 第二类:这两人有一个去当钳工,有种; 第三类:这两人都不去当钳工,有种. 因而共有185种. 例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数? 分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类. 抽出的三数含0,含9,有种方法; 抽出的三数含0不含9,有种方法; 抽出的三数含9不含0,有种方法; 抽出的三数不含9也不含0,有种方法. 又因为数字9可以当6用,因此共有2×(+)++=144种方法. 例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种. 分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有种停车方法. 3.特殊元素,优先处理;特殊位置,优先考虑 例9.六人站成一排,求 (1)甲不在排头,乙不在排尾的排列数 (2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类. 第一类:乙在排头,有种站法. 第二类:乙不在排头,当然他也不能在排尾,有种站法, 共+种站法. (2)第一类:甲在排尾,乙在排头,有种方法. 第二类:甲在排尾,乙不在排头,有种方法. 第三类:乙在排头,甲不在排头,有种方法. 第四类:甲不在排尾,乙不在排头,有种方法. 共+2+=312种. 例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止.若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能? 分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成. 第一步:第五次测试的有种可能; 第二步:前四次有一件正品有中可能. 第三步:前四次有种可能. ∴ 共有种可能. 4.捆绑与插空 例11. 8人排成一队 (1)甲乙必须相邻 (2)甲乙不相邻 (3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻 (5)甲乙不相邻,丙丁不相邻 分析:(1)有种方法. (2)有种方法. (3)有种方法. (4)有种方法. (5)本题不能用插空法,不能连续进行插空. 用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法. 例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况? 分析:∵ 连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题.另外没有命中的之间没有区别,不必计数.即在四发空枪之间形成的5个空中选出2个的排列,即. 例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种? 分析:即关掉的灯不能相邻,也不能在两端.又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯. ∴共=20种方法. 4.间接计数法.(1)排除法 例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形? 分析:有些问题正面求解有一定困难,可以采用间接法. 所求问题的方法数=任意三个点的组合数-共线三点的方法数, ∴ 共种. 例15.正方体8个顶点中取出4个,可组成多少个四面体? 分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数, ∴共-12=70-12=58个. 例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数? 分析:由于底数不能为1. (1)当1选上时,1必为真数,∴ 有一种情况. (2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log24=log39,log42=log93, log23=log49, log32=log94. 因而一共有53个. (3)补上一个阶段,转化为熟悉的问题 例17. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢? 分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数.因而有=360种. (二)先考虑六人全排列;其次甲乙丙三人实际上只能按照一种顺序站位,因而前面的排法数重复了种, ∴共=120种. 例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法? 分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次.因而有=9×8×7×6=3024种. 若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种. 例19. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法? 分析:先认为三个红球互不相同,共种方法.而由于三个红球所占位置相同的情况下,共有变化,因而共=20种. 5.挡板的使用 例20.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法? 分析:把10个名额看成十个元素,在这十个元素之间形成的九个空中,选出七个位置放置档板,则每一种放置方式就相当于一种分配方式.因而共36种. 6.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题. 例21. 从0,l,2,……,9中取出2个偶数数字,3个奇数数字,可组成多少个无重复数字的五位数? 分析:先选后排.另外还要考虑特殊元素0的选取. (一)两个选出的偶数含0,则有种. (二)两个选出的偶数字不含0,则有种. 例22. 电梯有7位乘客,在10层楼房的每一层停留,如果三位乘客从同一层出去,另外两位在同一层出去,最后两人各从不同的楼层出去,有多少种不同的下楼方法? 分析:(一)先把7位乘客分成3人,2人,一人,一人四组,有种. (二)选择10层中的四层下楼有种. ∴ 共有种. 例23. 用数字0,1,2,3,4,5组成没有重复数字的四位数, (1)可组成多少个不同的四位数? (2)可组成多少个不同的四位偶数? (3)可组成多少个能被3整除的四位数? (4)将(1)中的四位数按从小到大的顺序排成一数列,问第85项是什么? 分析:(1)有个. (2)分为两类:0在末位,则有种:0不在末位,则有种. ∴共+种. (3)先把四个相加能被3整除的四个数从小到大列举出来,即先选 0,1,2,3 0,1,3,5 0,2,3,4 0,3,4,5 1,2,4,5 它们排列出来的数一定可以被3整除,再排列,有:4×()+=96种. (4)首位为1的有=60个. 前两位为20的有=12个. 前两位为21的有=12个. 因而第85项是前两位为23的最小数,即为2301. 7.分组问题 例24. 6本不同的书 (1) 分给甲乙丙三人,每人两本,有多少种不同的分法? (2) 分成三堆,每堆两本,有多少种不同的分法? (3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法? (4) 甲一本,乙两本,丙三本,有多少种不同的分法? (5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法? 分析:(1)有中. (2)即在(1)的基础上除去顺序,有种. (3)有种.由于这是不平均分组,因而不包含顺序. (4)有种.同(3),原因是甲,乙,丙持有量确定. (5)有种. 例25. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______. 分析:(一)考虑先把6人分成2人和4人,3人和3人各两组. 第一类:平均分成3人一组,有种方法. 第二类:分成2人,4人各一组,有种方法. (二)再考虑分别上两辆不同的车. 综合(一)(二),有种. 例26. 5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种. 分析:(一)先把5个学生分成二人,一人,一人,一人各一组. 其中涉及到平均分成四组,有=种分组方法. (二)再考虑分配到四个不同的科技小组,有种, 由(一)(二)可知,共=240种.排列组合中几个易混淆问题之一
1. 分组问题
 分组问题是排列组合中的一个难点,主要有以下三种情况.
 1.1 非平均分组问题
 在非平均分组问题中,不管是给出组名或不给出组名,其分组的方法相同.
 【例1】
把12个人分成如下三组,分别求出以下各种分组的方法数.
 (1)分成甲、乙、丙三组,其中甲组7人、乙组3个、丙组2人.
 (2)分成三组,其中一组7人、一组3人、一组2人.
(1)先从12人中任选7人为甲组,余下5人中任选3人为乙组,剩下2人为丙组,则共有C12,7*C5,3*C2,2种不同的分组方法.
 (2)先从12人中任选7人为一组有C12,7种选法,再从余下5人中任选3人有C5,3种选法,剩下的2人为一组,共有C12,7*C5,3*C2,2种不同的方法.
 【点评】
由于各组人数不同,这个问题属于非平均分组问题,尽管第(1)个问题中给出了甲、乙、丙三个组,而第(2)个问题只是给出了各组人数而没有具体指定组名,但分组的方法数都是一样的.
易错点:误把(1)的结果表示为C12,7*C5,3*C2,2*P3,3
 1.2 平均分组问题
 上面的非平均分组问题中,是否给出组名对结果没有影响,但在平均分组问题中一定要注意问题是否给出了具体的组名,它们的结果是不同的.
 【例2】
有6本不同的书,按下列要求分配,各有多少种不同的分法?
 (1)分给甲、乙、丙三人,每人两本.
 (2)平均分成三份.
(1)从6本书中任取2本给一个人,再从剩下的4本中取2本给另一个人,剩下的2本给最后一人,共有C6,2*C4,2*C2,2=90种分法.
 (2)设平均分成三堆有x种方法,再分给甲、乙、丙三人每人得2本,则应有X*P3,3=C6,2*C4,2*C2,2
 ∴ C6,2*C4,2*C2,2/P3,3=15种不同的分法.
 【点评】
上面例子可以看出:两个问题都是分成3堆,每堆2本,属于平均分组问题,而(1)分到甲、乙、丙三人,属于到位问题,相当于给出了甲、乙、丙三个指定的组,但(2)没有给出组名,因而结果是不同的.
  1.3 局部平均分组问题
 某些分组问题中,有一部分组之间的元素的个数相同,但又不是所有组的元素都相同,这样的分组称为局部平均分组.解决这问题同样要考虑分组时是否给出了组名.
 【例3】
(1)把6本不同的书分给4人,两人各得1本,另外两人各得2本,有几种分法?
 (2)把6本不同的书分成4份,两份各1本,两份各2本,有几种分法?
我们先来研究:“两个无区别的白球与两个无区别的红球排成一排的方法数”问题.
如果这4个球各不相同,则有P4,4种排法,由于白球和红球各有P2,2种排法,因此两个白球与两个红球排成一排的排法有P4,4/P2,2种,下面来解决上述问题.
 (1)可按下面步骤完成:先将6本书分成1本、1本、2本、2本4个部分,然后让四个人去全排列取书,即有C6,1*C5,1*C4,2*C2,2=180种.
 (2)先把6本书分成1本、1本、2本、2本的4堆,由于两个1本与两个2本是无区别(没有顺序)的,因此,所求的分法数为C6,1*C5,1*C4,2*C2,2/(P2,2*P2,2)=45种.
 【点评】
两个问题同属局部平均分组问题,但(1)中指定分给了4个人,相当于指定了组名,而(2)没有给出组名,因此分组的情况是不相同的.事实上,(1)中相当于把4本书分成两份2本,两份1本,共有(C6,1*C5,1)/2!*(C4,2*C2,2)/2!种分配方法,然后把它分给4个人.
 在元素相同的组中,若没给出具体的组名,则必须除以相同元素的组数的阶乘,若把问题改为:把6本不同的书分成A、B、C、D四堆,其中A、B各2本,C、D各1本,则有几种分法?
该问题的分法有C6,1*C5,1*C4,2*C2,2种分法.
 因此,在解决分组问题中,要弄清以下几点:①分配对象是否明确(组名是否给出)?
 ②是否平均分配?
 ③是否局部平均分配?
 ④分配中有无顺序关系?
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。}

我要回帖

更多关于 排列组合计算 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信