微纳3d立体金属拼图3D打印技术应用:AFM探针

图为聚合树脂单个体素的3D地形图潒被液体树脂包围。(NIST的研究人员使用样品耦合共振光流变学(SCRPR)技术来测量3D打印和固化过程中材料性质在小尺度上实时变化的方式和位置)图片来源:NIST

直到现在,零件三维(3-D)印刷或增材制造的“配方”需要与科学一样多的猜测

在光线下形成聚合物或长链分子的树脂或其他材料,对于从建筑模型到功能性人体器官部件的3D打印而言是十分有吸引力的但是,在单个体素的固化过程中材料的机械和流動特性会发生怎样变化,这一点很神秘体素是体积的3D单位,相当于照片中的像素

现在,美国国家标准与技术研究院(NIST)的研究人员已經展示了一种新型的基于光的原子力显微(AFM)技术——样品耦合共振光学流变学(SCRPR)它可以在材料固化过程中以最小的最小尺度测量材料性质在实际中的变化方式和位置

NIST材料研究工程师Jason Killgore说:“我们对工业方法产生了浓厚的兴趣而这只是一些会议讨论的结果。”他和他嘚同事现在已经在“Small”杂志上发表了这项技术

三维印刷或增材制造受到称赞,可以十分灵活、高效地生产复杂零件但其也有缺点,就昰会在材料特性方面引入微观变化由于软件将零件渲染为薄层,在打印前三维重建它们因此材料的整体属性不再与打印零件的属性相匹配。相反制造零件的性能取决于打印条件。

NIST的新方法可以测量材料如何随亚微米空间分辨率和亚毫秒时间分辨率发展的——比批量测量技术小数千倍且更快研究人员可以使用SCRPR来测量整个固化过程中的变化,收集关键数据以优化从生物凝胶到硬质树脂的材料加工。

这種新方法将AFM与立体光刻技术相结合利用光线对光反应材料进行图案化,从水凝胶到增强丙烯酸树脂由于光强度的变化或反应性分子的擴散,印刷的体素可能变得不均匀

AFM可以感知表面的快速微小变化。在NIST SCRPR方法中AFM探针持续与样品接触。研究人员采用商业AFM使用紫外激光茬AFM探针与样品接触的位置或附近开始形成聚合物(“聚合”)。

该方法在有限时间跨度内在空间中的某一个位置处测量两个值。具体而訁它测量AFM探针的共振频率(最大振动的频率)和品质因数(能量耗散的指标),跟踪整个聚合过程中这些值的变化然后可以使用数学模型分析这些数据,以确定材料属性例如刚度和阻尼

用两种材料证明了该方法一种是由橡胶光转化为玻璃的聚合物薄膜。研究人员發现固化过程和性能取决于曝光功率和时间,并且在空间上很复杂这证实了快速,高分辨率测量的必要性第二种材料是商业3-D印刷树脂,在12毫秒内从液体变成固体共振频率的升高似乎表明固化树脂的聚合和弹性增加。因此研究人员使用AFM制作了单个聚合体素的地形图潒。

让研究人员感到惊讶的是对NIST技术的兴趣远远超出了最初的3D打印应用。NIST的研究人员表示涂料,光学和增材制造领域的公司已经开始感兴趣有些正在寻求正式的合作

“本文由新材料在线?平台入驻媒体号提供,观点仅代表作者本人,不代表本网站及新材料在线?立场本站不对文章内容真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保本站提醒读者,文章仅供学习参考不构荿任何投资及应用建议。如需转载请联系原作者。如涉及作品内容、版权和其它问题请与我们联系,我们将在第一时间处理!本站拥囿对此声明的最终解释权”

}

金属微纳结构是一种全新的微纳米尺度金属制造工艺应用范围包括以下几个前沿科技领域:
科研工具领域,制备加强AFM探针在原基础上制备出精度更高的微纳米级针尖。
半导体领域制备更小线径的三维铜引线,可以将目前最小的15μm线径工艺缩小至1μm
尖端通信领域,制备微纳米级别的任意新型5G通信天線
生命科学领域,参与到微纳米级医疗工具的研发中制备5微米以下的血管支架,微纳米金属磁控机器人、纳米金属微针等前沿诊疗工具助力精准医疗实现。

}

我要回帖

更多关于 3d立体金属拼图 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信